
Efficient Dynamic Skinning with Low-Rank Helper Bone Controllers

Tomohiko Mukai∗

Tokai University
Shigeru Kuriyama

Toyohashi University of Technology

Static
controller

Dynamic
controller

State-space model

Polynomial function
Helper bone
transformation

Dynamic component
 (ex. jiggling)

Static component
 (ex. bulging)

Helper
bone

Skin mesh

Primary skeleton

Skeleton
motion

Dynamic controller

State-
space
model

Rank reduction via
nuclear norm minimization

Output

(a) (b) (c)

State vector

Helper bone controller

Figure 1: (a) Linear blend skinning with two helper bones. (b) Skin deformation is synthesized using helper bones that are procedurally con-
trolled according to the primary skeleton motion using two types of controllers. (c) The stable and efficient dynamic controller is constructed
by low-rank approximation using the nuclear norm optimization method.

Abstract

Dynamic skin deformation is vital for creating life-like characters,
and its real-time computation is in great demand in interactive ap-
plications. We propose a practical method to synthesize plausible
and dynamic skin deformation based on a helper bone rig. This
method builds helper bone controllers for the deformations caused
not only by skeleton poses but also secondary dynamics effects.
We introduce a state-space model for a discrete time linear time-
invariant system that efficiently maps the skeleton motion to the
dynamic movement of the helper bones. Optimal transfer of non-
linear, complicated deformations, including the effect of soft-tissue
dynamics, is obtained by learning the training sequence consist-
ing of skeleton motions and corresponding skin deformations. Our
approximation method for a dynamics model is highly accurate
and efficient owing to its low-rank property obtained by a sparsity-
oriented nuclear norm optimization. The resulting linear model is
simple enough to easily implement in the existing workflows and
graphics pipelines. We demonstrate the superior performance of
our method compared to conventional dynamic skinning in terms
of computational efficiency including LOD controls, stability in in-
teractive controls, and flexible expression in deformations.

Keywords: Dynamic skinning, helper bone rig, state-space model,
nuclear norm optimization

Concepts: •Computing methodologies → Animation;

∗e-mail:tmki@acm.org
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org. c© 2016 ACM.
SIGGRAPH ’16 Technical Paper, July 24-28, 2016, Anaheim, CA,
ISBN: 978-1-4503-4279-7/16/07
DOI: http://dx.doi.org/10.1145/2897824.2925905

1 Introduction

In computer animation, deformation of skin surface significantly
affects the visual appearance of the character’s motion. Building a
good character rig is a key component in synthesizing skin defor-
mation; it should produce plausible behaviors while allowing a full
range of motion control for animators via a few intuitive parame-
ters. Efficient computation is also an important factor, especially for
interactive applications such as games. A common approach incor-
porates an articulated skeleton as the primary rig and computes ver-
tex positions of skin surface according to the skeleton pose. Linear
blend skinning (or LBS) techniques have been widely used in inter-
active applications because of their efficiency and simplicity. This
kinematic model has been successfully applied to actual produc-
tion workflows because most artists and animators are very skilled
at skeleton-based rigging. However, these skinning models cannot
produce dynamic deformation caused by external force, momentum
and inertia of soft tissues such as muscles and fats.

There have been many studies on synthesizing realistic skin defor-
mation that take into account the effects of soft-tissue dynamics.
Physics-based volumetric simulation, which includes finite element
methods and musculoskeletal systems, is a promising approach for
generating physically-valid skin deformation. Physics-based simu-
lation, however, requires expensive computational costs and care-
ful rigging of the character’s musculoskeletal model. Moreover, the
simulation is inferior to kinematic models in terms of controllability
and stability, both of which are necessary for real-time, procedural
generation of character animations.

Our goal is to develop a skeleton-based technique to synthesize
visually-plausible dynamic skin deformation in real-time. One of
the most important factors for our target is computational efficiency
rather than physical validity. The expected performance should be
in the order of tens of microseconds per frame per character at worst
because only a limited time budget is allowed for computing skin
deformation, especially with commercial products. The computa-
tional cost should also be predictable and constant regardless of
changes in a character’s surrounding, i.e., no iterative method is ac-
ceptable at runtime computation. Furthermore, the skinning model
should be simple and compact for minimizing both model complex-

http://dx.doi.org/10.1145/2897824.2925905

ity and memory requirements. Compatibility with standard graph-
ics pipelines is also important when incorporating a new technology
into the existing production workflows.

The helper bone rig has become a practical real-time technology for
synthesizing stylized skin deformation based on LBS [Parks 2005;
Kim and Kim 2011]. The helper bone is a secondary rig that influ-
ences the skin deformation, and its pose is procedurally controlled
according to the pose of the primary skeleton. This technique has
been widely used in many products because of its efficiency, flex-
ibility, and compatibility with the standard graphics pipeline. De-
signing dynamic skin deformation with helper bone rigs, however,
is still an annoying and intricate task even for expert riggers and
animators.

We propose a practical method for dynamic skinning with a helper
bone rig. Our main challenge is to establish plausible skin defor-
mation with minimal computational cost, while preserving suffi-
cient quality with conventional data-driven or physics-based meth-
ods. Our key idea is to procedurally control helper bones according
to skeleton motion in order to imitate dynamic skin deformation
as summarized in Figure 1. We build the helper bone controller
based on a state-space model (or SSM) of a discrete time linear
time-invariant system [Ljung 1999] for mapping the movements of
a character’s skeleton to those of helper bones. The dynamic system
of bone controllers is learned from sample sequences of skeleton
motions and skin deformations. We also employ a nuclear norm op-
timization method: a generalization of compression-sensing meth-
ods, such as l1-norm optimization, for effectively minimizing the
computational redundancy of a bone controller whose behavior is
learned from physically simulated animations. This optimal low-
rank approximation of the controller ensures sufficiently accurate
reproduction of training data while reducing the computational cost.

Our approach includes the following technical contributions:

• An SSM-based helper bone controller that can stably and ef-
ficiently synthesize dynamic skin deformation while allowing
flexible configurations.

• Robust SSM estimation with nuclear norm optimization that
effectively builds the compact bone controller by learning
sample skin deformations.

• A dynamic skinning scheme with a helper bone rig that is
applicable to various types of character models, and is fully
compatible with current production pipelines based on LBS
technique.

A main drawback of our approach is the lack of details on skin de-
formation caused by wrinkles or self-collisions, etc., because the
sparse set of helper bones merely linearly approximates the dy-
namics of soft tissues. Moreover, our kinematic approach does not
guarantee volume preservation and complex secondary dynamics
caused by external forces or interaction with other objects. The
effect of gravity is also not taken into account. Yet, our method
is practical for adding plausible secondary dynamics effects to the
character’s skin without requiring extra computational cost or a ma-
jor modification of the runtime system.

2 Related Work

Accurate skin deformation is often generated using physics-based
musculoskeletal [Li et al. 2013] or volumetric [Fan et al. 2014]
simulations. These simulation-based methods are unsuited to intu-
itively or intentionally changing the style of deformations and real-
time applications because of their high computational cost. DyRT
employs precomputed modal vibration models to efficiently synthe-
size the dynamic skin deformation [James and Pai 2002]. Although

this technique is useful for emulating physically-valid deformation,
artist-crafted stylized behavior is not taken into account. A data-
driven approach learns the dynamical properties of soft-tissue ma-
terials from the training data [Shi et al. 2008], but still suffers from
the computational complexity. Position-based dynamics (or PBD)
was used to synthesize skin deformation caused by self-collisions
and the secondary effects of soft tissues [Rumman and Fratarcan-
geli 2015]. This method provides plausible and stable soft body
motion at interactive rates, but requires the elaborate construction
of a PBD-based rig. For this reason, the kinematics-based approach
is still widely used because it requires no additional mechanism on
a standard character rig.

The kinematic skinning method efficiently computes vertex posi-
tions of the skin mesh based on the pose of the internal skeleton
structure. Linear blend skinning is a standard technique for synthe-
sizing skin deformation in real-time applications [Magnenat-Thal-
mann et al. 1988], and many refinements have been proposed to
overcome undesirable artifacts such as the so-called candy-wrapper
and elbow-collapse [Wang and Phillips 2002; Kavan et al. 2007;
Kavan and Sorkine 2012]. EigenSkin constructs an efficient model
of additive vertex displacement for LBS using principal component
analysis [Kry et al. 2002]. Corrective blendshape techniques like
pose-space deformation [Lewis et al. 2000] have also been widely
used to enhance the quality of skin deformation by interpolating
a set of sample shapes. Such kinematic, data-driven techniques,
however, do not generate dynamic skin deformation and have not
been supported yet by many graphics engines, especially on mobile
devices.

A helper bone rig has been used to compensate for unnatural de-
formations of the naive LBS [Mohr and Gleicher 2003] and to cre-
ate stylized skin deformations such as muscle bulging [Parks 2005;
Kim and Kim 2011; Mukai 2015]. Such helper bone rigs can be eas-
ily integrated into the standard LBS-based system, and have often
been extended to generate secondary dynamics effects. For exam-
ple, a simple mass-spring network is used for driving helper bones
in order to mimic the jiggling of soft tissues. However, such a sim-
ple physics model is difficult to stably control, especially for simu-
lations with large time steps. We use a state-space model to robustly
approximate the dynamics of helper bones.

Other approaches use secondary rigs for synthesizing dynamic
skin deformation. The kinodynamic skinning technique [Ange-
lidis and Singh 2007] provides volume-preserving deformation
based on proxy muscles. A rig-space physics technique optimizes
free parameters of the hand-crafted kinematic rig to approximate
physically-simulated skin deformation [Hahn et al. 2012; Hahn
et al. 2013]. These approaches have a relation with our method
in that the degree of freedom in controlling skin deformation is
reduced by procedurally controlling the secondary rig parameters
according to the pose of the primary rig.

The learning-based approach for skin deformation analyzes the re-
lationship between a skeleton pose and its corresponding skin shape
using a large set of samples. A regression technique was proposed
to estimate linear mapping from the skeletal pose to the deforma-
tion gradient of the skin surface polygons [Wang et al. 2007]. The
seminal work of Park and Hodgins [2008] predicts optimal map-
ping from skeletal motion to dynamic motion of several markers
placed on a skin surface. Neumann et al. [2013] have proposed
a statistical model of skin deformation that is learned from human
skin shapes captured with range scan devices. The MoSh model
estimates dynamic skin deformation from a sparse set of motion
capture markers using a statistical model of human skin shapes
[Loper and Black 2014]. This method synthesizes the skin shape
in a low-dimensional subspace so as to approximate the movement
of the markers. Dyna model also constructs a dynamic skin defor-

mation model using the subspace analysis of 4D scans of human
subjects [Pons-Moll et al. 2015]. The triangle deformation of the
skin mesh is generated using a modified version of second-order
autoregressive model with exogenous inputs (or ARX) in the low-
dimensional subspace. The SMPL model learns corrective blend-
shape models from shape samples [Loper et al. 2015], and is ex-
tended to the DMPL model that synthesizes dynamic deformation
by incorporating a dynamics model similar to Dyna. These methods
successfully produce realistic deformation of human skin. How-
ever, these learning-based techniques require the runtime cost for
each skin vertex increasing in proportion to the number of primary
bones, due to its global property. In contrast, our method only
drives fewer helper bones by primary skeleton, and the runtime cost
of the LBS-based skin deformation is unaffected by the number of
primary bones.

Soft body dynamics is often modeled using an ARX model, simi-
lar to the conventional learning-based dynamic skinning approach
[Pons-Moll et al. 2015; Loper et al. 2015]. The stable real-time
clothing model uses the second-order ARX model [de Aguiar et al.
2010] to predict cloth shape by the linear combination of skeleton
pose and the shape history over the past two frames. This method
takes a non-parametric approach, i.e., cloth dynamics is synthesized
in the low-dimensional subspace identified using principal compo-
nent analysis (or PCA). We use a state-space model (or SSM) which
is known as a generalization of the ARX model. In the control the-
ory community, SSM has actually become a standard parametric
representation for modeling an unknown dynamic system from ob-
served input/output data. Also in the graphics community, the effec-
tiveness of SSM was demonstrated in the motion style translation
method [Hsu et al. 2005]. Moreover, we employ a nuclear norm op-
timization method for constructing a helper bone controller based
on a low-rank SSM.

3 Preliminary

3.1 Skinning with helper bones

Here we review the typical procedure of LBS with helper bones.
Given a set of indices of primary skeleton bones P , a global trans-
formation matrix of a primary bone is computed as 4 × 4 homo-
geneous matrices Gp∈P . Let Ḡp and v̄i denote the matrix and the
positions of the i-th vertex on a skin at the rest (or initial) pose, and
the skinning transformation matrix of the primary bone be repre-
sented by Mp = GpḠ−1

p . We also apply accompanying secondary
bones called helper bones whose index set is given by H. Our skin-
ning formula is then represented as

vi =

(∑
p∈P

wi,pMp +
∑
h∈H

wi,hSh

)
v̄i, (1)

where vi is the position of the deformed vertex and Sh denotes the
skinning matrix of the h-th helper bone. The first term of Equation
1 corresponds to skin deformations driven by primary skeleton, and
the second term contributes an additional control for deformations
using helper bones. The number of helper bones |H| is manually
given by designers so as to balance the deformation quality and
computational cost. Helper bones are procedurally controlled with
simple expressions according to the pose of the primary skeleton in
common practice.

3.2 Skinning decomposition

In traditional rigging processes, the skinning weights and helper
bone controllers are manually designed by riggers. Our goal is to
automatically optimize these variables using the training data of

skeleton motion and its accompanying skin deformation. This op-
timization problem, however, is difficult to directly solve due to
the high nonlinearity of multiple constraints. We therefore divide
it into two subproblems; the first subproblem estimates all optimal
skinning weights w∗

j,p, w
∗
j,h and skinning matrix S∗

h,τ at each time
frame τ ∈ T so as to best approximate the training data, and this
subproblem is regarded as a skinning decomposition problem [Le
and Deng 2012; Le and Deng 2014; Mukai 2015]. The second sub-
problem approximates the estimated discrete-time transformations
S∗
h,τ by the bone controller model with respect to the primary skele-

ton pose. We address the first subproblem in the rest of this section
and the second subproblem is detailed in the next section.

Given the training sequence of the skinning matrix of a primary
skeleton M̃p,τ and the corresponding vertex animation ṽi,τ , our
skinning decomposition problem is formulated as a constrained
least square problem to minimize the sum of the squared recon-
struction error between the training skin deformation ṽi,τ and the
reconstructed one vi as

(w∗, S∗) =

argmin
w,S

∑
τ∈T

∑
i∈V

∣∣∣∣∣ṽi,τ −
(∑

p∈P
wi,pM̃p,τ +

∑
h∈H

wi,hSh,τ

)
v̄i

∣∣∣∣∣
2

2

(2)

subject to wi,p ≥ 0, wi,h ≥ 0, ∀ i ∈ V, p ∈ P, h ∈ H (3)∑
p∈P

wi,p +
∑
h∈H

wi,h = 1, ∀ i ∈ V (4)

∑
p∈P

|wi,p|0 +
∑
h∈H

|wi,h|0 ≤ κ, ∀ i ∈ V (5)

where | · |n denotes ln-norm and V is the set of vertices’ indices.
The constant κ indirectly constrains the number of bones contribut-
ing to deformations for adjusting the tradeoff between computa-
tional cost and accuracy. In addition to these three constraints of (3)
non-negativity, (4) partition of unity, and (5) sparsity constraints on
the skinning weights, we apply the rigidity constraint for enforcing
all Sh,τ to consist of only translational and rotational components.
This nonlinear constrained optimization problem is robustly solved
using a block coordinate descent algorithm [Mukai 2015]. Notice
that all constraints must be satisfied to utilize APIs supported by
common graphics engines.

4 Helper Bone Controller

4.1 Controller model

Our controller model assumes that helper bones are driven by the
primary skeleton that has only spherical joints. The poses of helper
bones are uniquely determined from all rotational components of
the primary bones rp ∈ SO(3) and the velocity of the root node,
which is denoted by a column vector u as

u := �t0 ‖ �r0 ‖ r1 ‖ r2 ‖ · · · ‖ r|P| , (6)

where u ∈ 	3|P|+6, ‖ is a concatenation operator for vector val-
ues, |P| is the number of primary bones, and �t0 ∈ 	3 and
�r0 ∈ SO(3) respectively denote the time-variation of the root’s
position and that of its orientation, both of which are computed in
the moving coordinate system of the root node. We use exponential
maps for the rotation variable r because it allows gimbal lock-free,
approximately linearized parameterization.

Each helper bone is attached to the primary skeleton as a child of a
primary bone, i.e., the φ(h)-th primary bone is regarded as a par-
ent of the h-th helper bone. The skinning matrix Sh is therefore

composed of the local transformation Lh and the parent’s global
transformation as Sh = Gφ(h)LhḠ−1

φ(h) by assuming Lh is identity
at the rest pose.

Our control model imposes rigidity constraints on helper bone
transformation, i.e., the local transformation Lh is composed of
only translational and rotational components, which are denoted by
th and rh, respectively, as

Lh = m (qh) , qh :=

[
th
rh

]
∈ 	6 (7)

where m : 	6 → 	4×4 is the function that composes a transfor-
mation matrix from the rigid transformation components qh. The
helper bone controller is then defined as a function with respect to
the pose of the primary skeleton as qh(u).

We also assume that skin deformation is modeled as the concatena-
tion of static and dynamic deformation [Park and Hodgins 2008];
the former is determined according to the pose of the primary skele-
ton at the current time, and the latter depends on the history of both
skeleton motion and skin deformation over the past time steps. The
skinning transformation of a helper bone q is therefore represented
by the concatenation of a static component x and a dynamic one
y; q = x + y (for now, we omit the subscript h for indexing each
helper bone because the following computations are separately ap-
plied). The static transformation x is computed according to the
skeleton pose. The dynamic transformation y, on the other hand, is
controlled using a state-space model which takes into account cu-
mulative information of past skeletal poses and helper bone trans-
formations.

4.2 Overview of learning

Helper bone controllers x(u) and y(u) are estimated to accurately
approximate the discrete-time skinning matrix S∗

τ which is the out-
put of Equation 2. Given the parent bone φ(h), the local transfor-
mation component q∗

τ is analytically extracted from the skinning
matrix S∗

τ as the reference by q∗
τ = m−1(G−1

φ(h),τS∗
τ Ḡφ(h)). The

static controller x(u) : 	dim(u) → 	6 is first learned so as to best
approximate these discretized references: x(uτ) ≈ q∗

τ , ∀τ ∈ T
where uτ denotes the skeletal pose vector of Equation 6 at the τ -th
frame. The residual between the reference transformation and the
static component ỹτ = q∗

τ − x(uτ) is used to learn the dynamic
controller y(u) : 	dim(u) → 	6.

The optimal parent bone φ(h) is exhaustively searched among all
primary bones so as to minimize the sum of the squared norm of
the residual |ỹτ |22 over the entire training sequence. Although this
approximation neglects the fitness for dynamic components, the re-
sulting accuracy is acceptable in practice because the static defor-
mation is usually dominant over the dynamic one, especially for a
slow and smooth skeletal motion.

4.3 Static controller

The static controller of helper bone is modeled as a polynomial
regression function with respect to the primary skeleton pose u
[Mukai 2015]. This simple linear model provides an efficient
computation that can be further accelerated by imposing a spar-
sity constraint using the LASSO technique [Tibshirani 2011]. Let
γp ∈ 	4Hχ−1 be composed of variable terms of the χ-th order
polynomial of {rp, 1}, where nHχ denotes the number of combi-
nations with repetitions for χ. For example, we obtain the second-
order polynomials γ = [r1, r2, r3, r21 , r22 , r23 , r1r2, r1r3, r2r3]
for {r, 1} = {r1, r2, r3, 1}. The static component x(u) is then

expressed as

x(u) = FΓ , Γ :=
[
1,γ1, · · · ,γ|P|

]T
, (8)

where | · |T denotes the transpose of the matrix, Γ is the concate-
nated independent vector composed without the root velocities �t0
and �r0, and F ∈ 	6×dim(Γ) is the coefficient matrix whose di-
mension is usually large, e.g., 6 × 190 for the polynomial order
χ = 3 and the number of primary bones |P| = 10. The matrix F is,
however, inherently sparse because of the local region of influence
by each bone. We therefore convert F into a sparse coefficient ma-
trix for optimally reducing the number of non-zero entries. Given
the reference transformation q∗

τ and the matrix Γτ constructed from
the primary bone rotation rp,τ at the τ -th frame, the sparse solution
F∗ can be approximately obtained by solving the l1-norm optimiza-
tion problem as

F∗ = argmin
F

(∑
τ∈T

|q∗
τ − FΓτ |22 + α |F|1

)
, (9)

where α is the positive shrinkage parameter that controls the trade-
off between model accuracy and the number of non-zero entries.
We refer readers to [Mukai 2015] for details about the effect of α.
This Lasso problem can be solved using a stock solver. The train-
ing data of dynamic component ỹτ is then obtained by the resid-
ual between the static component and reference transformation as
ỹτ = q∗

τ − F∗Γτ .

4.4 Dynamic controller

The dynamic transformation of the helper bones yτ , which is the
residual from Section 4.2, is assumed to be expressed as a linear
time-invariant system represented by the SSM as[

zτ+1

yτ

]
=

[
A B
C D

] [
zτ
uτ

]
. (10)

System matrices A ∈ 	k×k, B ∈ 	k×dim(u), C ∈ 	dim(y)×k and
D ∈ 	dim(y)×dim(u) represent the mapping from the current inter-
nal state zτ ∈ 	k and pose uτ to the next state zτ+1 and the current
dynamic transformation yτ , where k represents the reduced dimen-
sion of a system matrix (see Appendix A). The k-dimensional state
vector zτ contains the minimal subset of cumulative information of
past inputs and outputs, which can be interpreted as a reduced rep-
resentation of internal dynamics such as momentum and potential
energy. This SSM-based dynamic controller does not require ro-
tational velocity nor acceleration of primary bones, since the state
vector implicitly contains information of such model-specific dy-
namics. Moreover, our learning method estimates its minimum di-
mensionality k from the training data.

The system identification method estimates an SSM to describe un-
known dynamic systems from measured input/output data. We here
briefly review the standard system identification, and explain later
about the computation of A, B, C and D in Appendix A. Please
refer to [Ljung 1999] for more details. The subspace system iden-
tification method uses singular value decomposition to estimate the
minimum order of the state vector and system matrices [Moor et al.
1988]. The basic approach of the subspace method constructs the
matrix Θ from input/output data. This is given by Equation A.2
in Appendix A, and contains the essential information of state-to-
output transfer. The state-to-state transfer matrix A and the state-to-
output transfer matrix C are then estimated via truncated singular
value decomposition (or TSVD) of the matrix Θ. The remaining
system matrices B and D are uniquely determined by solving a least
square problem using the estimated A and C.

Si
ng

ul
ar

 v
al

ue

Order

Truncation

Low-rank
 approximation

Original matrix

Figure 2: Distribution of singular values. Sharper fall-off is ob-
served in low-rank approximation via nuclear norm minimization.

Nuclear norm system identification The standard subspace
method determines the dimension of the internal state vector z and
that of the system matrices by discarding the smallest singular val-
ues of Θ. Although more compact bone controllers can be ob-
tained by decreasing the dimension of the state vector while dis-
carding small singular values, an excessive truncation causes sig-
nificant loss of prediction accuracy, especially when singular val-
ues of Θ gradually decrease in order, as shown by the red curve in
Figure 2. The matrix rank reduction method is therefore required
to obtain the low-rank matrix whose singular values have sharply
fallen off as shown by the blue curve. Ideally, a matrix rank should
be minimized while keeping the approximation error within some
threshold. However, such minimization is generally an NP-hard
problem [Recht et al. 2010].

Several recent studies on system identification have shown that the
nuclear norm is an alternative heuristic for relaxing the matrix rank
minimization, which can be regarded as a generalization of l1-norm
optimization [Liu and Vandenberghe 2009]. We employ a nuclear
norm optimization for system identification (or N2SID) [Liu et al.
2013], which provides a more flexible and stable solution than other
methods [Liu and Vandenberghe 2009; Recht et al. 2010; Liu and
Vandenberghe 2009]. Let Υ := y1 ‖ y2 ‖ · · · ‖ y|T | be the
concatenated vector composed of system outputs yτ , and N2SID
forms the following minimization problem:

Υ∗ = argmin
Υ

(
|Θ(Υ)|N + β

∑
τ∈T

|ỹτ − yτ |22

)
, (11)

where β is the positive shrinkage parameter, and | · |N denotes the
sum of singular values, called a nuclear norm (or trace norm). This
objective is to find the optimized output y∗

τ that reduces the rank
of Θ(Υ), while maintaining the variables close to the training data
ỹτ by which a sparse solution of internal state zτ is obtained. This
minimization problem is formulated as a semidefinite programming
which can be solved using a convex optimization solver. Although
the nuclear norm optimization does not guarantee the minimality
of the matrix rank, empirical observations in system identification
studies have shown that it often provides effective low-rank approx-
imation. Please refer to [Liu et al. 2013] for details regarding nu-
clear norm optimization for system identification.

System matrices are finally estimated via TSVD of Θ(Υ∗). The ac-
curacy of the estimated model is competitive with existing subspace
identifications because it preserves linear structure in low-rank ap-
proximation. Naive TSVD and the other dimensionality reduction
methods, such as probabilistic PCA and non-negative matrix fac-
torization, destroy the structure of the matrix Θ in estimating its
low-rank approximation. In contrast, the nuclear norm method op-
timizes only output variables while preserving the linear structure

of the matrix. This property is important for effective system iden-
tification as explained in Appendix A.

Heuristic stabilization The solution of N2SID becomes un-
stable if at least one eigenvalue of the system matrix A is greater
than or equal to one, which causes divergence of the states. The
most typical heuristic to make A divergence-free is to invert such
unstable eigenvalues [Liu 2009]. Let A = Q−1TQ be the Schur
decomposition of A where Q is a unitary matrix, Q−1 is its conju-
gate transpose, and T is an upper triangular matrix whose diagonal
elements are the eigenvalues of A. All eigenvalues greater than
one are replaced by their inverse to update A. This process is re-
peated until all eigenvalues become less than one. Although a sta-
bilization method based on semidefinite programming [Mari et al.
2000] would further improve model accuracy, this simple heuristic
worked out well in all of our experiments.

Component-wise control The computational cost of nuclear
norm optimization increases according to the dimension of the ma-
trix Θ,∝ dim(yτ)×(dim(yτ)+dim(uτ)), where our experimen-
tal data have dim(uτ) = 15. Naive implementation took over an
hour to solve the optimization in computing all output variables of
dim(yτ) = 6 at once, which is impractical and often unstable due
to its large dimensions. We therefore compute each component of
yτ separately on each individual dynamic controller, by which the
dimension is reduced to dim(yτ) = 1. We experimentally con-
firmed that each controller learning was stably computed within
minutes. Such component-wise modeling neglects the correlation
among the variables of 3D translation and rotation, by which a re-
dundant controller may be unintentionally constructed. Although
this redundancy does not damage the accuracy, a more compact
controller could be built by simultaneously analyzing all transfor-
mation variables with a more robust and efficient semidefinite pro-
gramming solver.

5 Experimental Evaluations

We evaluated approximation capability and computational perfor-
mance using training datasets of dynamic skin deformations. All
experiments set up the maximum number of blended transforma-
tions to κ = 4, and third-order polynomial χ = 3 is used for
all static controllers. The reconstruction error was evaluated us-
ing root mean squared error (or RMSE) of the vertex position. The
learning of the helper bone controller was parallelized over vertices,
helper bones, and samples using Intel Threading Building Blocks.
We used a Python implementation of the interior-point method, dis-
tributed as a part of CVXOPT [Andersen et al.], for nuclear norm
approximation. The runtime execution time of the helper bone con-
trollers was measured on a workstation with Dual Intel Xeon E5-
2687W CPUs (40 logical processors) at 3.1GHz and 192 GB RAM.

5.1 Performance evaluation

Sample data We used a muscle function of Autodesk Maya
2016 to generate samples of dynamic skin deformation driven by
skeleton motion. The muscle system simulates muscle-skin dy-
namic deformation caused by primary skeleton motion, bone ac-
celeration, and inertia of soft tissues. A monster’s leg asset of a
Maya tutorial, supplied by Autodesk Inc., was used for training and
evaluation (Figure 3). The skeleton has 3 animating primary bones
and 5 degrees of freedom (DOFs) including hip swing and twist
(3 DOFs), knee bend (1 DOF) and ankle bend (1 DOF). The eleven
muscles expand and contract according to movement of the primary
skeleton, and drive the deformation of 552 vertices using the pro-
prietary algorithm.

(a) Primary skeleton (b) Virtual muscle (c) Skin mesh

200 cm

Animating
 bone

Figure 3: Monster leg model used for performance evaluation. The
skin deformation is driven by transformations of virtual muscles.

Sample data of about 4000 frames were created by randomly sam-
pling joint rotation angles of the primary skeleton at 250 randomly
selected keyframes to cover the wide range of dynamics. We used
common spline-based keyframe interpolation for the first half of the
sequence, and the last half was interpolated using a keyframe freez-
ing technique that holds a keyframe value until the next keyframe.
Corresponding skin vertex animation was finally simulated using
the built-in muscle function.

Computational performance Table 1 shows the computa-
tional performance by using the relationship between the number of
helper bones and reconstruction errors, runtime execution time, av-
erage dimensionality of the state vector, and data size. The increase
in the number of helper bones leads to the increase of execution
time and data size in a monotonic manner. Nevertheless, they are
efficient enough to ensure real-time responses. The static controller
requires less computational cost than the dynamic one since SSM
has more parameters than the polynomial function.

On the other hand, the approximation error was not monotonically
decreased with respect to the number of helper bones. The low-
est RMSE is obtained for 4 helper bones in spite of the low accu-
racy of the corresponding static controller at the same time. This
shows the larger compensational effect from the dynamic deforma-
tion than the static one. This result also implies that the static con-
troller partly reflects the secondary dynamics in training data. Our
ad-hoc approach, which trains both controllers from the same data,
does not guarantee pure separation of the static component, i.e., the
static controller involves frequently-appearing patterns of the sec-
ondary deformations. This property contributes efficiency because
the static controller is computed faster than SSM and is convenient
for level-of-detail controls as explained in Section 5.5.

Table 2 summarizes the time required to construct the helper bone
rig from training data. The computational time proportionally in-
creases with the number of helper bones. The most expensive part
is the dynamic controller learning that solves semidefinite program-
ming. This computational cost is quadratic in the duration of the
training sequence and the dimensionality of input/output data.

Figure 4 visualizes the initial configuration and skinning weight
map for each of the 6 helper bones, with each of them located at the
position of the corresponding parent bone. The helper bone (a) has
a large influence on the skin and mostly contributes to the dynamic
deformation around hip and thigh. The helper bones (b) and (e) cor-
rect the deformation of hip and thigh, and (c), (d) and (e) drive the
deformation of lower leg. For example, the skinning weight of two
helper bones (a) and (b) is distributed around the same area behind
the knee, by which complex skin deformation was produced with
multiple helper bones.

Table 1: Statistics for the various numbers of helper bones. The
learning parameters were set to α = 10 and β = 102. Two kinds
of reconstruction errors were measured: with only the static con-
trol (upper) and with both the static and dynamic control (lower),
respectively. The execution time (left in each cell) is divided into
those for the static (upper right) and dynamic components (lower
right).

of RMSE
(cm)

Execution avg.
dim(z)

Data
helper time size
bones (μs/frame) (KB)

0 5.18 - -

1 2.92 4.3 1.7 3.83 2.2 0.3
2.83 2.6 1.9

2 2.91 15.9 2.0 3.33 3.9 0.6
2.73 13.9 3.3

3 2.88 17.9 2.6 3.39 6.0 0.9
2.64 15.3 4.1

4 2.92 19.5 3.3 3.25 8.0 1.1
2.47 16.2 6.9

5 2.83 21.5 3.6 3.37 9.9 1.5
2.55 17.9 8.4

6 2.81 22.8 4.0 3.22 11.5 1.8
2.53 18.8 9.7

Table 2: Computational time of rig construction (in seconds).
The learning process of a static controller includes the exhaustive
search for an optimal parent bone.

of helper Total Skinning Controller learning
bones decomposition Static Dynamic

1 51.0 3.0 1.4 46.6
2 97.7 4.3 2.8 90.7
3 141.3 5.6 4.1 131.6
4 186.7 7.8 5.8 173.1

Effect of nuclear norm optimization The effectiveness of nu-
clear norm optimization was evaluated using various settings of
shrinkage parameter β. We also used the numerical algorithm
for system identification (or N4SID) [Ljung 1999] as a baseline,
which is the most widely-used system identification method based
on TSVD.

Table 3 summarizes the performance with respect to shrinkage pa-
rameter β for 4 helper bones. About 70% of SSM data was reduced
from the N4SID method for β = 102. The computational perfor-
mance of bone controller was improved as β decreased. However,
the increases of the approximation error, computational time and
data size are observed around β = 10, which indicates that the es-

(a) (b) (c) (d) (e) (f)

Figure 4: Distribution map of skinning weight of each helper bone
by coloring the area of larger weights with a darker blue, where the
figure in (c) is rotated to effectively display the distribution around
the inner calf.

Table 3: Performance for various settings of the shrinkage param-
eter β of N2SID.

Method RMSE
(cm)

Execution avg.
dim(z)

Data
time size

(μs/frame) (KB)
N4SID 3.07 22.5 9.17 51.0

N2SID

β = 105 2.50 19.3 3.21 7.3
β = 104 2.49 19.2 3.08 7.1
β = 103 2.48 19.2 3.04 7.0
β = 102 2.47 19.5 3.25 8.0
β = 10 2.49 20.4 4.04 9.0

sential information of the system input/output was lost by excessive
reduction of the nuclear norm. Although the best shrinkage param-
eter β is yet unknown, this result suggests that the accuracy has
little impact on these performance indicators. We therefore trained
helper bones with the learning parameters of α = 10 and β = 102

for all experiments. Note that some heuristics, such as Akaike in-
formation criterion and Bayesian information criterion, are possible
tools for optimally determining these learning parameters to bal-
ance the reconstruction accuracy and the computational cost.

Generalization performance For evaluating generalization
performance, we created two additional sequences of 4000 frames
using the abovementioned procedure to test the 4 trained helper
bones. The average RMSE was 2.43 cm, which is slightly bet-
ter than the measurement obtained by using training data as test-
ing ones (= 2.47 cm). This high generalization performance is
made possible by having a sufficient amount of training data, since
the accuracy of SSM is increased monotonically by using a longer
training sequence in N2SID [Liu et al. 2013].

We also evaluated the generalization ability of our method for the
same monster’s leg model, using the 4 trained helper bones. Two
types of animation data were used for testing: one is hand-crafted
to contain only slow and smooth motions and the other to include
rapid stretching and stamping motions. These behaviors did not ap-
pear in the training data. The RMSE was 1.69 cm for the smooth
motions, which is smaller than those obtained with the procedu-
rally generated test data. On the other hand, the RMSE for the
rapid motions was increased to 3.06 cm. This result suggests the
lower generalization capability of our dynamic controller because
the near-static slow motions are reproduced only with static con-
trollers and the rapid motions mainly with dynamic controllers.
The errors caused by dynamic controllers, however, are still small
enough and acceptable because no serious artifact occurs, thanks to
the stability of SSMs.

Robustness for behavioral modifications Figure 5(b) shows
the modified version of the monster leg model (Figure 5(a)), created
by tweaking the muscle parameter to magnify the bulging deforma-
tion and to make the skin softer. The skin mesh was smoothened
by subdividing polygonal faces in order to evaluate detailed de-
formation. The training data were created by randomly sampling
keyframes in the same way as the first experiment.

We built 4 helper bones and their controllers as seen in Figure 5(d).
The helper bone rig reproduces the overall behavior of soft skin
well. The resulting RMSE was 2.60 cm, which was larger than
measurements from previous experiments due to the increase of
muscle softness. Especially, self-penetration and collapse of the
skin mesh were often caused when heavy movement was applied
to the primary skeleton as shown in the supplemental video. Maya
muscle function simulates the complex skin deformation accompa-

(a) Base model (b) Stylized
 model

(c) Skinned
 model

(d) Helper bones

Figure 5: Modified version of monster’s leg.

(a) (b)

Figure 6: (a) Non-articulated model with H-shaped skeleton which
drives the skin deformation using a mass-spring simulation. (b)
Approximation with 4 helper bones.

nied by the self-collisions of skin surface. Such highly-nonlinear,
local behavior is difficult to approximate by polynomial- or SSM-
based control with the sparse set of helper bones. Undesirable
artifacts could be reduced by limiting the range of helper bones’
motions; accurately estimating the safe range, however, is an open
question.

The execution time and data size for all helper bone controllers
were 19.2 μs per frame and 6.9 KB, respectively. Both values
depend on the numbers of primary and helper bones and the di-
mension of the helper bone controllers. The number of skin ver-
tices affects neither the execution time of the helper bone controller
nor its memory requirement. On the other hand, the rig construc-
tion took 72.0, 5.5, and 172.0 seconds for skinning decomposition,
static controller learning, and dynamic controller learning, respec-
tively. Notice that increasing mesh resolution increases the cost of
skinning decomposition without affecting the controller learning.

Flexibility in rig structure and simulation model Our helper
bone rig can be built for non-articulated elastic models as shown in
Figure 6. An H-shaped skeleton (|P| = 4) was embedded in this
flat soft body whose training deformations were generated using
a simple mass-spring simulation. The elastic behavior of the soft
model was reproduced with 4 helper bones to exhibit long-period
vibrations. This shows the capability of our SSM-based controller
for well-imitating the deformations of different types of rig struc-
tures and dynamics property as demonstrated in the supplemental
video.

5.2 Comparison against ARX model

We have compared our SSM-based dynamic controller model
against the ARX-based one [de Aguiar et al. 2010; Pons-Moll et al.
2015; Loper et al. 2015] using the same sample data of the mon-
ster’s leg. The standard formulation of the ρ-th order ARX model

Table 4: Comparison with ARX models.

SSM ARX
2nd 3rd 4th

RMSE (cm) 2.47 4.40 4.53 4.50
Data (KB) 8.0 4.0 5.3 6.6

is expressed for the dynamic component y(μ) as

y(μ) = Ψμ , μ := yτ−ρ ‖ · · · ‖ yτ−1 ‖ uτ−ρ+1 ‖ · · · ‖ uτ ,
(12)

where μ ∈ 	ρ·(dim(y)+dim(u)), and Ψ ∈ 	6×ρ·(dim(y)+dim(u))

is the coefficient matrix composed of the autoregression term and
the exogenous input term, and it is optimized by solving the least
square problem.

Table 4 summarizes the reconstruction error and data size for
second-, third-, and fourth-order ARX models. This result verifies
the superior performance of the SSM and N2SID compared to the
ARX model. From the viewpoint of visual appearance, ARX mod-
els cannot maintain jiggly movements; they only cause subtle and
slowly converging jiggles (see the supplemental video). This defect
might be derived from the general property of the ARX model, as it
is excessively sensitive to redundancy and noise in the input/output
signals. Existing methods therefore extend the input variables of
ARX models by adding joint rotation velocities and accelerations,
and use a dimensionality reduction technique to identify a low-
dimensional subspace of deformation dynamics. In contrast, our
method works without such extensions, i.e. only skeleton pose u is
required to control the helper bones, because the state vector z im-
plicitly holds the minimal subset of the internal dynamic state such
as momentum and inertia. In addition, nuclear norm optimization
further minimizes the redundancy of state variables and system ma-
trices.

5.3 Heterogeneous soft tissue

We here conduct a test on a practical example of a human charac-
ter whose heterogeneous muscle structure was made from different
materials. The human model was composed of 11356 vertices, 19
primary bones, and 328 virtual muscles of various elasticities as
shown in Figure 7(a). We approximated this muscle rig using 1, 2,
and 4 helper bones, and each construction time was 124, 205, and
362 seconds, for investigating which body parts were preferentially
compensated for by adding helper bones.

Table 5 summarizes the statistics of the learning result. The skin-
ning weights accumulated over all helper bones are visualized in
Figure 7(b), (c) and (d). The first helper bone covered the wide
area around shoulders and fatty parts like upper body and hip (Fig-
ure 7(b)), neither deformation which could be reconstructed using
naive LBS. The additional second helper bone refined the distribu-
tion of skinning weights to improve the deformation quality around
the same area (Figure 7(c)). The case of four helper bones exhibited
more detailed weight distribution especially on shoulders, and also
distributed around the legs (Figure 7(d)). This result indicates that
our learning algorithm of the bone controller successfully detected
the heterogeneous distribution of soft tissues.

Figure 8 visualizes the error of the vertex position obtained with 4,
6 and 8 helper bones at the frame of the largest RMSE in the train-
ing sequence. As the heat maps indicate, the reconstruction errors
were not always consistently decreased according to the number of
helper bones. Our method minimizes the global error over all ver-
tices and over the entire training sequence; however, it often causes
an increase in the error of local regions. Although this defect is

Table 5: Performance for various numbers of helper bones.

of RMSE
(cm)

Execution avg.
dim(z)

Data
helper time size
bones (μs/frame) (KB)

1 0.41 17.8 3.17 9.6
2 0.40 22.5 3.83 21.5
4 0.39 27.8 3.44 36.3

(a)Muscle (d) 4 helpers(c) 2 helpers(b) 1 helper

Figure 7: (a) Muscle rig of human-like character. (b)-(d) Accumu-
lated skinning weight of all helper bones where the area of larger
weights is indicated by a darker blue.

4 helper bones 6 helper bones 8 helper bones

Error
1.0 cm

0

Figure 8: The heat map shows the error from the ground truth
where blue and red mean 0 and ≥ 1 cm, respectively.

negligible in most cases, an alternative controller learning method
might be explored to ensure both global and local optimality.

5.4 Exaggeration of dynamic deformations

We can exaggerate certain components of the dynamic transforma-
tion of a helper bone by simply scaling the corresponding compo-
nent of y. Our helper bone controller allows designers to intuitively
control the effect of soft-tissue dynamics. This operation does not
affect the stability and efficiency of the bone controller because no
feedback is supplied from the output y to the internal state z. On
the other hand, exaggeration for static deformation component x is
often difficult due to its nonlinear relation to the primary skeleton
pose u.

We evaluated these suppressing or exaggerating effects for the mon-
ster leg model with 4 helper bones by uniformly scaling all dynamic
components y by 0.5, 1.0, 2.0, 4.0 and 6.0. As demonstrated in
the supplemental video, this simple technique can provide intuitive
results without any extra computations. Excessive increase of the
scaling ratio, however, caused collapse of skin surface, as shown
in Figure 9, because our purely signal-based approach neglects the
physical phenomenon of deformed shapes. Despite such a draw-
back, this signal-based technique is practical for creating a variety
of skin stiffness from a single set of training data.

x 0.5 x 1.0 x 2.0 x 4.0 x 6.0

Figure 9: Deformation exaggeration by scaling dynamic controller
output where each of the blue and red circles encloses the vertex
of the same index for comparing their movements according to the
scales of exaggeration. Dynamic deformation around the thigh was
generated by sharp downswing of the character and the inertia
of soft tissues. Excessive exaggeration yields the collapse of skin
mesh.

50 m50 m

100 m100 m

Figure 10: A massive crowd scene synthesis with LOD control on
skin deformation. Yellow, green and red models activated both dy-
namic and static controller, only static controller, and neither con-
troller, respectively.

5.5 Deformation level-of-detail controls

The level of-detail (or LOD) control of skin deformation can be eas-
ily implemented by simply switching on/off the bone controllers.
The dynamic control of the helper bone is disabled in higher pri-
ority if its visual appearance is unperceivable on the screen. Static
control is disabled next if the character is distant from view. This
three-level control was applied to a massive crowd scene including
4900 monster leg models. Characters were arranged on the regular
grid of 2 meters on each side. The static controller was activated to
the character in the view frustum within 100 meters radius from the
viewpoint, and the dynamic controller was combined for characters
within 50 meters. Both controllers were disabled for the other dis-
tant characters. We measured execution time per frame in synthe-
sizing the local transformation of the helper bones of all characters.

The average execution time was 1.72 ms for 700 fine-level charac-
ters and 1700 middle-level ones, as shown in Figure 10. The 900
fine-level visible characters required 6.9 ms without LOD controls
as a worst case, and the computation time was reduced to 2.11 ms
with the LOD control. This shows that redundant computation for
skin deformation was effectively reduced by our LOD control tech-
nique.

6 Discussion

We have proposed a practical method for synthesizing plausible
skin deformation including the effects of soft-tissue dynamics. Our
dynamic skinning with the helper bone controller has the following
advantageous properties:

Efficiency Low-rank approximation of a linearly structured SSM
with nuclear norm optimization allows simpler and faster run-
time computations.

Stability Stability of the bone controller is guaranteed by introduc-
ing a divergence-free system matrix through heuristic modifi-
cations.

Simplicity SSM and N2SID methods require few parameters to be
tuned, whereas the ARX model requires a careful decision of
the model order and selection of input variables.

Flexibility The controller learning is intrinsically signal-based,
which allows various dynamical behaviors to be flexibly imi-
tated without any extension of the controllers.

Portability Skin deformation can be efficiently implemented on
GPU using the standard LBS procedure, and the general
matrix-vector formulation of the SSM ensures portability.

To the best of our knowledge, our method is the first to introduce
the nuclear norm optimization method to data-driven animations.
This method has the potential to be applied to a wide variety of
regression-based animation syntheses for minimizing model com-
plexity. For instance, our rank-reduced, SSM-based dynamic con-
troller would be a better alternative to traditional ARX models used
in corrective shape-based techniques [de Aguiar et al. 2010; Loper
et al. 2015; Pons-Moll et al. 2015].

Our signal-based learning approach has the potential for imitat-
ing physically-invalid deformations hand-crafted by animators, al-
though the training data were generated using physics-based sim-
ulations in all experiments. However, estimating the expressive
space reproducible by our controller model is an open question.

Since the helper bone is a general-purpose rig, our method can
be applied to various types of skeleton-driven characters includ-
ing non-articulated animals and creatures. Also, our example-based
learning of helper bone controllers can be applied to a substitute for
other types of computationally-expensive rigs. We experimentally
confirmed that the behaviors of muscle rigs with heterogeneous
structure can be successfully imitated by a lighter-weight helper
bone rig. It is challenging to simultaneously construct the skele-
ton and helper bone rigs from a sequence of simulated or captured
shape animations [Neumann et al. 2013; Pons-Moll et al. 2015] in
a fully-automated way.

Limitations and future work Our helper bone has limitations
on the interactions between the skin and other objects or against
external forces because it is controlled only by the primary skeleton.
For example, our helper bone is not applicable to the deformation
of feet caused by ground contact. Furthermore, our method restricts
each helper bone to be bound to a single primary bone as a parent,
i.e., a helper bone is not allowed to be a child of another helper
bone. This precondition cannot allow the dynamics propagating
along a long thin model such as an animal’s tail.

Our method does not ensure global optimality for the skinning
weights and the helper bone controller. We have found that an in-
crease in the number of helper bones often degrades the reconstruc-
tion, because numerical errors are separately accumulated when
solving optimizations for the skinning decomposition and bone
controller learning. A more sophisticated algorithm should be in-
vestigated to simultaneously solve these problems.

Our SSM-based controller can be learned only from a single con-
tinuous sequence of skeleton motions and corresponding skin de-
formations because N2SID cannot simultaneously analyze different
sequences. This limitation requires a training sequence of a length
that exponentially proliferates for the number of primary bones.

Our system identification should be extended to handle multiple se-
quences. Moreover, our method currently lacks the generalization
ability for deformations of different skin materials. This limitation
might be overcome by using a mixture of multiple SSMs learned
from sample data of various materials, like mixture of ARX models
[Xia et al. 2015].

A helper bone is usually affected by spatially neighboring a few
primary bones. Such a locality could be automatically detected
by the l1-norm optimization in learning the static bone controller.
However, low-rank approximation of the N2SID method might not
fully reflect the intrinsic sparsity of the linear system. This defect
could be overcome by introducing sparsity constraints into the least
square estimate of the system matrices.

Although most helper bone rigs have been adopted for the LBS-
based technique, popular nonlinear blend skinning techniques such
as dual quaternion skinning are worth investigating, and will be in-
cluded in our future work.

Acknowledgements

We thank TAISO, Renpoo for making the human character model
available at http://www.behind-universe.org/ and for many helpful
comments. This work was supported by JSPS KAKENHI Grant
Number 15K16110, 15H02704.

References

ANDERSEN, M. S., DAHL, J., AND VANDENBERGHE,
L. CVXOPT: A python package for convex optimization.
http://cvxopt.org.

ANGELIDIS, A., AND SINGH, K. 2007. Kinodynamic skinning
using volume-preserving deformations. In Proceedings of ACM
SIGGRAPH/Eurographics Symposium on Computer Animation
2007, 129–140.

DE AGUIAR, E., SIGAL, L., TREUILLE, A., AND HODGINS, J. K.
2010. Stable spaces for real-time clothing. ACM Transactions
on Graphics 29, 4, 106:1–106:9.

FAN, Y., LITVEN, J., AND PAI, D. K. 2014. Active volumetric
musculoskeletal systems. ACM Transactions on Graphics 33, 4,
152:1–152:9.

HAHN, F., MARTIN, S., THOMASZEWSKI, B., SUMNER, R.,
COROS, S., AND GROSS, M. 2012. Rig-space physics. ACM
Transactions on Graphics 31, 4, 72:1–72:8.

HAHN, F., THOMASZEWSKI, B., COROS, S., SUMNER, R., AND
MARKUS. 2013. Efficient simulation of secondary motion in rig-
space. In Proceedings of ACM SIGGRAPH/Eurographics Sym-
posium on Computer Animation 2013, 165–171.

HSU, E., PULLI, K., AND POPOVIĆ, J. 2005. Style translation
for human motion. ACM Transactions on Graphics 24, 3, 1082–
1089.

JAMES, D. L., AND PAI, D. K. 2002. Dyrt: Dynamic response
textures for real time deformation simulation with graphics hard-
ware. ACM Transactions on Graphics 21, 3, 582–585.

KAVAN, L., AND SORKINE, O. 2012. Elasticity-inspired deform-
ers for character articulation. ACM Transactions on Graphics
31, 6, 196:1–196:8.

KAVAN, L., COLLINS, S., ZARA, J., AND O’SULLIVAN, C. 2007.
Skinning with dual quaternions. In Proceedings of ACM SIG-
GRAPH Symposium on Interactive 3D Graphics 2007, 39–46.

KIM, J., AND KIM, C.-H. 2011. Implementation and applica-
tion of the real-time helper-joint system. In Game Developers
Conference 2011.

KRY, P. G., JAMES, D. L., AND PAI, D. K. 2002. Eigenskin: Real
time large deformation character skinning in hardware. In Proc.
of ACM SIGGRAPH/Eurographics Symposium on Computer An-
imation 2002, 153–159.

LARIMORE, W. 1990. Canonical variate analysis in identification,
filtering and adaptive control. In Proceedings of Control & De-
cision Conference, 596–604.

LE, B. H., AND DENG, Z. 2012. Smooth skinning decomposition
with rigid bones. ACM Transactions on Graphics 31, 6, 199:1–
199:10.

LE, B. H., AND DENG, Z. 2014. Robust and accurate skeletal
rigging from mesh sequences. ACM Transactions on Graphics
33, 4, 84.

LEWIS, J. P., CORDNER, M., AND FONG, N. 2000. Pose
space deformation: A unified approach to shape interpolation
and skeleton-driven deformation. In Proceedings of SIGGRAPH
2000, 165–172.

LI, D., SUEDA, S., NEOG, D. R., AND PAI, D. K. 2013. Thin skin
elastodynamics. ACM Transactions on Graphics 32, 4, 49:1–
49:9.

LIU, Z., AND VANDENBERGHE, L. 2009. Interior-point method
for nuclear norm approximation with application to system iden-
tification. SIAM Journal on Matrix Analysis and Application 31,
3, 1235–1256.

LIU, Z., HANSSON, A., AND VANDENBERGHE, L. 2013. Nuclear
norm system identification with missing inputs and outputs. Sys-
tems & Control Letters 62, 8, 605–612.

LIU, Z. 2009. Structured Semidefinite Programs in System Identi-
fication and Control. PhD thesis, University of California, Los
Angeles.

LJUNG, L. 1999. System Identification: Theory for the User. Pren-
tice Hall.

LOPER, M., AND BLACK, N. M. M. J. 2014. Motion and shape
capture from sparse markers. ACM Transactions on Graphics
33, 6, 220:1–220:13.

LOPER, M., MAHMOOD, N., ROMERO, J., PONS-MOLL, G.,
AND BLACK, M. J. 2015. SMPL: A skinned multi-person linear
model. ACM Transactions on Graphics 34, 6, 248:1–248:16.

MAGNENAT-THALMANN, N., LAPERRIÈRE, R., AND THAL-
MANN, D. 1988. Joint-dependent local deformations for hand
animation and object grasping. In Proceedings on Graphics In-
terface ’88, 26–33.

MARI, J., STOICA, P., AND MCKELVEY, T. 2000. Vector ARMA
estimation: a reliable subspace approach. IEEE Transaction on
Signal Processing 48, 7, 2092–2104.

MOHR, A., AND GLEICHER, M. 2003. Building efficient, accurate
character skins from examples. ACM Transactions on Graphics
22, 3, 562–568.

MOOR, B. D., MARC MOONEN AND, L. V., AND VANDEWALLE,
J. 1988. A geometrical approach for the identification of state
space models with singular value decomposition. In Interna-
tional Conference on Acoustics, Speech, and Signal Processing,
vol. 4, 2244–2247.

http://www.behind-universe.org/
http://cvxopt.org

MUKAI, T. 2015. Building helper bone rigs from examples. In
Proceedings of ACM SIGGRAPH Symposium on Interactive 3D
Graphics and Games 2015, 77–84.

NEUMANN, T., VARANASI, K., HASLER, N., WACKER, M.,
MAGNOR, M., AND THEOBALT, C. 2013. Capture and statisti-
cal modeling of arm-muscle deformations. Computer Graphics
Forum 32, 2, 285–294.

PARK, S. I., AND HODGINS, J. K. 2008. Data-driven modeling of
skin and muscle deformation. ACM Transactions on Graphics
27, 3, 96:1–96:6.

PARKS, J. 2005. Helper joints: Advanced deformations on runtime
characters. In Game Developers Conference 2005.

PONS-MOLL, G., ROMERO, J., MAHMOOD, N., AND BLACK,
M. J. 2015. Dyna: A model of dynamic human shape in motion.
ACM Transactions on Graphics 33, 4, 120:1–120:10.

RECHT, B., FAZEL, M., AND PARRILO, P. A. 2010. Guaranteed
minimum-rank solutions of linear matrix equations via nuclear
norm minimization. SIAM Review 52, 3, 471–501.

RUMMAN, N. A., AND FRATARCANGELI, M. 2015. Position-
based skinning for soft articulated characters. Computer Graph-
ics Forum 34, 6, 240–250.

SHI, X., ZHOU, K., TONG, Y., DESBRUN, M., BAO, H., AND
GUO, B. 2008. Example-based dynamic skinning in real time.
ACM Transactions on Graphics 27, 3, 29:1–29:8.

TIBSHIRANI, R. 2011. Regression shrinkage and selection via the
lasso: A retrospective. Journal of the Royal Statistical Society:
Series B (Statistical Methodology) 73, 3, 273–282.

VERHAEGEN, M. 1994. Identification of the deterministic part of
MIMO state space models given in innovations form from input-
output data. Automatica 30, 1, 61–74.

VIBERG, M. 1995. On subspace-based methods for the identifica-
tion of linear time-invariant systems. Automatica 31, 12, 1835–
1852.

WANG, X. C., AND PHILLIPS, C. 2002. Multi-weight enveloping:
Least-squares approximation techniques for skin animation. In
Proceedings of ACM SIGGRAPH/Eurographics Symposium on
Computer Animation, 129–138.

WANG, R. Y., PULLI, K., AND POPOVIĆ, J. 2007. Real-time
enveloping with rotational regression. ACM Transactions on
Graphics 26, 3, 73:1–73:10.

XIA, S., WANG, C., CHAI, J., AND HODGINS, J. 2015. Realtime
style transfer for unlabeled heterogeneous human motion. ACM
Transactions on Graphics 34, 4, 119:1–119:10.

A. Subspace method for system identification

We here briefly explain the subspace method for system identifica-
tion [Liu et al. 2013]. The purpose of system identification is to
estimate the SSM (Equation 10) that best describes the relation be-
tween observed input uτ , i.e., the training sequence of the skeleton
pose vector, and the output signals yτ , i.e., the dynamic transfor-
mation of helper bone.

First, b-block Hankel matrices for input U(i) and output Y(i) are
constructed from uτ and yτ , τ ∈ T , respectively. Because both
matrices are computed in a similar way, we here only provide the

definition of U(i) as

U(i) =

⎡
⎢⎢⎣

ui+1 ui+2 · · · ui+N

ui+2 ui+3 · · · ui+N+1

...
...

. . .
...

ui+b ui+b+1 · · · ui+N+b−1

⎤
⎥⎥⎦ , (A1)

where U(i) ∈ 	b·dim(u)×N , N is the size of the sampling window,
and b is the number of blocks that limits the maximum dimension of
the internal state vector zτ as dim(zτ) ≤ b · dim(y), both of which
are manually specified to satisfy N ≥ 2b (dim(u) + dim(y)) and
N + 2b ≤ |T |. Specifically, the number of blocks b has to be
larger than the expected order of the SSM, and the larger size of
the sampling window N usually provides more accurate estimation.
We used b = 10 and N = |T | − 2b in all of our experiments.

The following matrix Θ is a key component of the subspace method
for estimating optimal SSM from input/output signals, which is
given by

Θ = W1Y(b)U
†
(b)

[
UT

(0), YT
(0)

]
W2 , (A2)

where Θ ∈ 	b·dim(y)×b·(dim(u)+dim(y)). The matrix U†
(b) ∈ 	N×N

is the nullspace projection satisfying U(b)U
†
(b) = 0, which serves

to cancel the effect of input signals from the output, and the con-
catenated matrix

[
UT

(0), YT
(0)

]
is added to achieve more consistent

estimation. Two square weight matrices W1 and W2 serve to im-
prove estimation accuracy, and various algorithms for determin-
ing these values have been proposed [Larimore 1990; Verhaegen
1994; Viberg 1995]. We experimentally confirmed that instrumen-
tal variable algorithm [Viberg 1995] achieved better accuracy in
most cases, which are defined as

W1 =
(

Y(b)U
†
(b)Y

T
(b)

)−1/2

,

W2 =

([
U(0)

Y(0)

] [
U(0)

Y(0)

]T)−1/2

. (A3)

Note that, in the N2SID method, the matrix Y(b) is constructed from
the optimized variables y∗

τ for providing a structure-preserving low-
rank approximation of Θ, whereas the measured output yτ is used
for computing W1, W2 and Y(0).

The system matrices are estimated via TSVD Θ ≈ ΦΣΩ, where
Σ ∈ 	k×k is composed of the k largest singular values of Θ.
Given the singular values σ{i=1,··· ,b·dim(y)} of Θ in descending
order, the matrix order k is determined by computing the cumu-
lative contribution ratio λk =

∑k
i=1 σi/

∑b·dim(y)
j=1 σj and finding

the minimum k satisfying λk ≥ λmin for a given cutoff threshold
λmin, where λmin = 0.95 was used for all of our experiments.

The system matrices A and C are then estimated using the product
of the right singular vectors and the weight matrix W−1

1 Φ, because

it approximates
[
CT , (CA)T , (CA2)T , · · · , (CAb−1)T

]T
. Let

V := W−1
1 Φ and the partition V in b block rows V1, · · · ,Vb of

size dim(y)× k, then the optimal C∗ is estimated to C∗ = V1, and
A∗ is obtained by solving the following least square problem,

A∗ = argmin
A

b∑
i=2

|Vi − Vi−1A|2F , (A4)

where | · |F denotes the Frobenius norm. The rest system matrices
B and D and initial state vector z0 are estimated by solving the
following least square problem:

min
B,D,z0

N+b−1∑
i=1

∣∣∣∣∣C∗(A∗)iz0 +
i−1∑
j=0

C∗(A∗)i−jBui + Dui − yi

∣∣∣∣∣
2

2

.

