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Abstract—This paper proposes an unsupervised framework for
retargeting human facial animations to different characters. Our
method uses a branching structure of two parallel autoencoders
and a variant of generative adversarial networks. The two au-
toencoder branches, composed of graph convolutional networks,
share a common latent space through which the retargeting
between different mesh structures can be performed. The shared
latent codes are obtained by graph pooling operators, and the
character face is reconstructed from the latent codes by the
unpooling operators. The graph pooling and unpooling operators
are designed based on multiple landmarks in optical-based
facial motion capture systems. The GAN-based unsupervised
learning method requires no paired training animation data
between source and target characters. Our experimental results
demonstrated that the proposed framework provides a reasonable
estimation of a target facial expression that mimics a source
character.

Index Terms—facial animation, retargeting, unsupervised
learning, graph convolutional network

I. INTRODUCTION

Facial expressions of virtual avatars play an essential role
in the narrative of digital content, such as movies and games,
by conveying emotional and non-verbal information. Because
people are familiar with human faces, they are susceptible
to unreal and unnatural expressions in the graphics contents.
Hence, producing believable facial animation requires an ex-
pensive workload to manually edit the keyframed or captured
facial animations by experienced 3D animators, even though
a high-fidelity facial capture system is available.

Many approaches have been proposed to improve the effi-
ciency of facial animation production. Animation retargeting
is a typical technique to eliminate the need for facial capture
and manual editing by transferring existing animations from
a source character to target characters. Traditional retarget-
ing approaches establish the correspondence between facial
models using multiple anchor points and transfer the anchor
movements to preserve the characteristics of the target shape
and the source animation. However, the retargeting problem
is still challenging when the source and target face models
show significant differences in shape and mesh structure, even
though several deep learning methods have been proposed
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to overcome the problem. Moreover, conventional machine
learning methods often require paired animation data that
cannot be prepared in practice.

In this study, we propose an unsupervised framework to
retarget facial animation to other characters using unpaired
animation data. The proposed framework is inspired by a
skeleton-aware retargeting method for character’s full-body
movements [1]. This method uses a branching structure of two
parallel autoencoders and a variant of generative adversarial
networks (GAN). The two autoencoder branches, which con-
sist of graph convolutional networks (GCN), share a common
latent space through which the retargeting between different
skeletal structures can be performed. Based on this network
architecture, our method learns shared latent space from both
source and target facial animations through facial shape-
aware graph pooling. The target facial expression is generated
from the latent code by graph unpooling. These pooling and
unpooling operators are designed based on multiple facial
landmarks, commonly used in optical-based facial motion
capture systems. Thanks to GAN-based learning, our method
does not require any paired animations between source and
target characters. The main contributions of this study are
summarized as follows:

• The facial shape-aware graph pooling and unpooling
operators with a facial landmark set for transferring facial
deformation to different facial mesh structures

• GAN-based architecture to enable facial animation retar-
geting without paired training data

II. RELATED WORK

Blendshape-based facial retargeting has been widely used
for estimating optimal blendshape parameters to best approx-
imate a source face expression [2], [3]. An artist-friendly
method [4] optimizes the limited number of blendshape param-
eters to facilitate the animator’s workflow. A spacetime method
[5] formulates the blendshape-based facial retargeting problem
as a Poisson equation to consider animation similarities in the
velocity domain. These methods successfully reproduce the
source animation, but the expression capability is restricted
within a pose space defined by the set of blendshape targets
of the target character. Compared to those blendshape-based



methods, our framework does not require the creation of the
paired blendshapes.

Deformation transfer is used to generate a target facial
expression by transferring the deformation gradient of the
source animation [6]. This method allows direct transferring
of vertex-wise facial movement and has been widely used
to generate a set of blendshape targets by retargeting from
the source rig [7], [8]. The quality of this method largely
depends on the accuracy of surface correspondence between
the source and target models. Although several methods have
been developed to automatically find the shape correspondence
[9], the purely geometric approaches do not consider the
dynamics of facial movements.

There are many studies based on deep neural networks. A
variational autoencoder has been devised for the facial ex-
pression transfer [10]. This method uses nonlinear expression
embedding and expression domain translation. Neutral face
rigging method [11] enables an end-to-end facial retargeting
between different face models by learning latent expression
space. The limitation of these methods is that the paired data
must be prepared by manual annotations. An unsupervised
learning method retargets facial expression to a target model
via the rendered images of the source animation [12]. This
network architecture is tailored to estimate the blendshape
weights. In contrast, our method is designed to work directly
on mesh data.

III. PROPOSED FRAMEWORK

Our goal is to retarget animation between two face models
which have different mesh structures and sets of expres-
sions. This problem can be formulated as an unpaired cross-
domain translation task. Let SA and Mfa

A , fa ∈ FA be the
rest shape and the facial movement of a source character
at fa-th frame, respectively, where FA denotes the set of
facial expressions and the fa-th expression is computed by
SA + Mfa

A . For the target character, the rest shape SB and
movements Mfb

B , fb ∈ FB are also defined similarly. Our facial
retargeting problem is defined by a data-driven mapping as
GA→B : ((SA,M

f
A),SB) → (SB, M̃

f
B), where M̃f

B represents
the estimated facial expression of the target character mim-
icking Mf

A, as shown in Fig.1. To solve this problem, the
proposed framework is designed based on the skeleton-aware
network [1], where the graph convolutional layers, pooling
layers, and the loss function are customized for our facial
retargeting task.

A. Network Design

Our framework uses a branching structure of two parallel
autoencoders consisting of two encoders EA and EB, two
decoders DA and DB, and two discriminators CA and CB
trained for two characters A and B, as illustrated in Fig.2. Each
autoencoder network comprises the graph convolutional layers,
the graph pooling layer, and the graph unpooling layer, as
shown in Fig.3, where V and K(K ≪ V ) denote the number
of mesh vertices and the number of landmarks, respectively,
as detailed in §III-B. The two autoencoders share a common

Fig. 1. The retargeting result is obtained by transferring the source animation
to the target model

Fig. 2. The overview of the network architecture

latent space learned from the facial movements of different
character models. The graph convolutional layer has a batch
normalization layer to avoid the tendency to approach zero for
the latent code, as shown in Fig.4.

Our network also contains two discriminators to determine
whether the generated result is natural. The structure of the
discriminator is similar to the encoder, as shown in Fig.5. Note
that the last layer is the sigmoid function, such that the output
of discriminators is bounded in the unit interval.

B. Landmark-based Graph Pooling and Unpooling

To project the facial deformation of two characters with
different topologies into an identical latent space, we as-
sume that the facial deformation of human-like characters
is represented by the spatial movements of multiple facial
landmarks. In fact, a detailed facial motion can be captured
by detecting the translation of a limited number of reflective
markers in the optimal facial capture system. We therefore
define 68 landmark locations mainly according to the facial
capture method [13]. We also define 20 additional landmarks
to improve the retargeting performance, as shown in Fig.6.

Our method assigns each vertex to the nearest landmark.
Let sv∈{1,··· ,V } and pk∈K denote the vertex positions and
landmark position at the rest shape, respectively, where K =
{1, · · · ,K} represents a set of landmarks and K = 88. Our
system assigns v-th vertex to the closest landmark kv as
kv = argmin k∈K ∥pk − sv∥ where ∥ · ∥ represents Euclidean
distance. As a result, the set of facial vertices is divided into
K subsets Vk∈K where ∀(k1, k2),Vk1 ∩ Vk2 = ∅ holds.

The shared latent space is learned using graph pooling
and unpooling operators [14] based on the landmark set. In



Fig. 3. The structure of graph autoencoder where V and K denote the number of facial mesh vertices and the landmarks, respectively.

Fig. 4. The structure of graph convolutional layer

the encoder stage, the graph pooling operator calculates the
average motion features of adjacent vertices assigned to the
corresponding landmark. Specifically, we calculate the assign-
ment matrix P ∈ ℜK×V according to the vertex-landmark
correspondence. The assignment matrix is first initialized to
be zero matrix P = 0, and the matrix element is set to one
as Pk,n = 1 if n-th vertex belongs to k-th landmark. The
pooling layer transforms the input variable X ∈ ℜV×H and
the adjacency matrix of the graph A ∈ ℜV×V into the output
variable Z ∈ ℜK×H and the transformed adjacency matrix
Anext using the assignment matrix P as follows.

Z̃ = PX ∈ ℜK×H , (1)

Z = Degree Norm(Z̃) ∈ ℜK×H , (2)

Anext = PAPT ∈ ℜK×K , (3)

where Degree Norm(·) divides the input variable by the
number of assigned vertices.

In the decoder stage, the vertex movements are restored
from the latent code using the unpooling operator. The feature
at the landmark node is distributed to the related nodes set
Vk by transforming the latent code Z using the transposed

Fig. 5. The structure of discriminator

Fig. 6. Landmark locations

assignment matrix as PTZ. The adjacent matrix A is restored
from the original facial mesh.



C. Loss Function

The loss function of our framework evaluates the weighted
sum of three loss terms as follows.

L = λrecLrec + λcycLcyc + λadvLadv , (4)

where Lrec, Lcyc, and Ladv are the reconstruction loss, the cycle
consistency loss, and the adversarial loss, respectively. The
weighting coefficients λrec, λcyc, and λadv are set to 1, 1, and
0.25 in our all experiments, respectively.

a) Reconstruction Loss: To train the autoencoder
(EA, DA) for animations of the source character, reconstruc-
tion accuracy over all input expressions is evaluated to guar-
antee the network’s generation ability. The reconstruction loss
Lrec is defined as the expectation of squared reconstruction
error.

Lrec = Ef∈FA

[
∥DA(EA(M

f
A))−Mf

A∥
2
]
. (5)

b) Cycle Consistency Loss: The cycle consistency loss
Lcyc [15] serves as a method to impose regularization on the
task of unidirectional translation for a facial deformation by
making GA→B and GB→A to be inverses of each other such that
GB→A(GA→B(M

f
A)) ≈ Mf

A and GA→B(GB→A(M
f
B)) ≈ Mf

B
as follows.

Lcyc = Ef∈FA

[
∥DA(EB(M̃

f
B))−Mf

A∥
2
]
. (6)

Note that we experimentally confirmed that the cycle consis-
tency loss provides higher quality for our facial retargeting
tasks than the latent consistency loss used in the skeleton-
aware network [1].

c) Adversarial Loss: Because the facial animation data is
unpaired, there is no ground truth for comparing the retargeting
result. Therefore, the adversarial loss Ladv is introduced into
our framework, where a discriminator CB determines whether
the result for the face model is real or fake. Like other genera-
tive adversarial networks, the discriminator CB is trained using
the animations in FB as the real examples and the output of
GA→B as the fake ones.

Ladv = Ef∈FA

[
∥CB(M̃

f
B)∥

2
]
+ Ef∈FB

[
∥1− CB(M̃

f
B)∥

2
]
.

(7)

D. Training and Testing

The overview of the training stage of the retargeting from
the source character A to the target B is shown in Fig. 7.
The facial movement of source character is encoded by EA
into the latent code. Then, decoder DA reconstructs the facial
movement of the source character via Lrec. The retargeting is
achieved by feeding the latent code to decoder DB and the
Lcyc is evaluated between the original latent code generated
by EA and the translated latent code by EB. In the test stage,
the trained network retargets facial expressions from A to B,
as shown in Fig.8. Retargeting is achieved by using DB to the
encoded delta face by EA. Note that these describe only the
process of A → B retargeting, while the training of B → A
retargeting is symmetric.

IV. EXPERIMENTS

We implemented the proposed framework using PyTorch
Geometric. All experiments were performed on a PC with an
NVIDIA GeForce RTX 3080 GPU with 10 GB RAM and an
AMD Ryzen 9 5950X/3.4GHz CPU with 128 GB RAM. We
used the Adam optimizer and set the batch size to 32. The
training stage took about 20 hours for 1000 epochs.

As the GAN architecture network is well-known for its
difficulty in training, we used the following two tricks.

• We trained with two time update rules, applying different
learning rates for the generator and discriminator. The
learning rate for the generator and discriminator were 1e-
3 and 1e-4, respectively.

• We trained the generator more in the training stage. The
ratio of the number of iterations of the discriminator and
the generator was 1:5.

A. Data Processing

We used the Multiface dataset [16] to train and test our
framework. This dataset contained high-quality 4D scans of
13 identities, which covered a variety of facial expressions
like smiling, frowning, and reading long sentences, as shown
in Fig.9.

In the data preprocessing, we first clipped the face region
of the character model, as shown in Fig.10, because the other
head region did not deform. Next, the facial expressions with
the most significant deformation from the rest shape were
extracted to improve the training performance. Specifically,
our system selected the manually-specified number of ani-
mation frames that showed large deformations from the rest
shape ∥Mf −S∥. This process improved the data distribution
tendency by eliminating many neutral expressions that appear
in the multiface dataset. Finally, we standardized the dataset to
reshape the input data distribution into a Gaussian distribution.

As a result, the number of vertices of characters A and B
were VA = 3264 and VB = 3165, respectively. The number
of expressions was reduced to |FA| = |FB| = 3840 in our
experiments. The ratio of the train test split was 8:2, and we
did not use the validation set.

B. Qualitative Evaluation

This section shows qualitative evaluations of the retargeting
results. Each figure shows the original shape, the retargeting
result, and the ground truth from left to right.

Fig.11 shows the retargeting results from character A to
character B. Fig.11(a) shows the ”mouth open and tongue out”
results. In this example, the deformation around the mouth
was successfully transferred from the source model to the
target. However, the lip shape was unclear and the generated
mesh around the jaw was not smooth compared to the ground
truth. In the ”stretched smile” result (b), the mouth shape
with raised corners was well transferred to the target, whereas
the retarget result significantly differed from the ground truth.
This result indicated that the expression specific to character
A was successfully retargeted to a different character B. In the
”raising cheeks” result (c), although the overall deformation of



Fig. 7. Network in training time from character A to B.

Fig. 8. Network in testing time from character A to B.

Fig. 9. Facial expressions in Multiface dataset [16].

the lips was transferred to the target, some artifacts appeared
on the upper lip, and the mouth was not so clearly opened.

Fig. 10. Clipping of character head model.

In the ”pronunciation ’Oooo.’” (d), the lips puckering of the
original face model was retargeted to approximate the ground
truth well. However, the jaggy artifacts appeared around the
mouth.

Fig.12 shows the retargeting results from character B to A.
In the ”mouth open and tongue out” example (Fig.12(a)), the
mouth shape of the source model was successfully transferred



Fig. 11. Retargeting from Character A to B

Fig. 12. Retargeting from Character B to A

to the target and produced the facial shape close to the ground
truth. However, noise-like artifacts appeared around the jaw. In
the results of ”smile stretched” (b), the retarget result showed a
considerable difference to character B’s expression, as well as
the transfer results in the reverse direction shown in Fig.11(a).
These results demonstrated the potential capability of our
expression retargeting, but non-negligible mesh collapses were
caused in the lower half of the face. Fig.12 (c) and (d) show the
”raising cheeks” and ”pronunciation ’Oooo’” results. In these
results, the target model successfully reproduced the mouth
deformation of the source face although the detailed shape
around the mouth was lost.

These results verified that our method could retarget fa-
cial animation between two human characters with distinct

topologies when the facial deformation was not complex.
For example, the deformations of ”mouth open and tongue
out” and ”raising cheeks” were successfully transferred to
the target. However, the retargeting did not work for several
expressions. For example, the retargeting of ”raising cheeks”
worked well from character A to B, but it failed for the
reverse direction, as shown in Fig.11(c) and Fig.12(c). The
retargeting also failed for several complex facial deformations.
For instance, our method caused deformation artifacts in the
combination of the motion ”raise upper lip” and ”scrunch
nose.” Moreover, several results caused non-smooth artifacts,
as shown in Fig.14. The possible reason is that our method
did not consider the smoothness of mesh in our loss function.



Fig. 13. The topology is different between the result and ground truth

Fig. 14. The comparison of smoothness between the result and ground truth

V. CONCLUSIONS

We have proposed an unsupervised facial retargeting method
for human characters. The proposed neural network is trained
to encode the human facial deformation into a common latent
space using graph pooling and unpooling operations based
on facial shape-aware landmarks. The latent code is then
decoded back to a target mesh structure, which enables trans-
ferring facial animations to different character models. Our
experimental results verified that the proposed framework can
reasonably retarget human facial animations using unpaired
facial animation data. We believe that the proposed method po-
tentially enhances the production efficiency in entertainment,
human-computer interaction, virtual reality, and related fields.

However, the results of the retargeted animation still need
to be improved since many artifacts cause the generated facial
meshes. For example, the jaggy artifacts are generated in
the retargeting results because the spatial smoothness is not
considered in the loss function. Moreover, the feature in the
landmark node is simply distributed to the adjacent nodes, so
the generated deformation is averaged in the corresponding
region. This simple approach results in undesirable deforma-
tion. We will explore potential solutions to overcome these
issues in our future work. For example, we will add a domain-
adversarial loss using two classifiers for the latent code [17].
Moreover, automatic tagging techniques like [18] should be
introduced to reduce the manual labor of landmark tagging. We
will also investigate a more practical approach to enhancing
retargeting quality by considering temporal coherence.
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