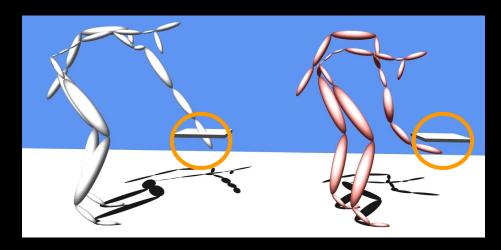


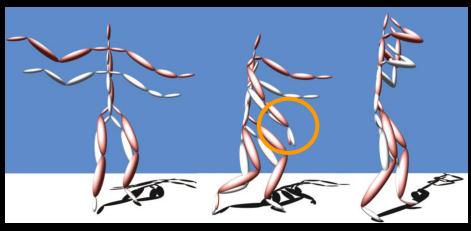
Motion Adaptation with Cascaded Inequality Tasks

Tomohiko Mukai

Shigeru Kuriyama

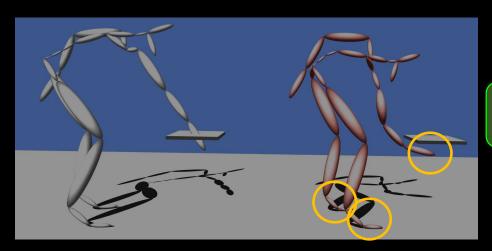

Masaki Oshita

Tokyo Metropolitan University

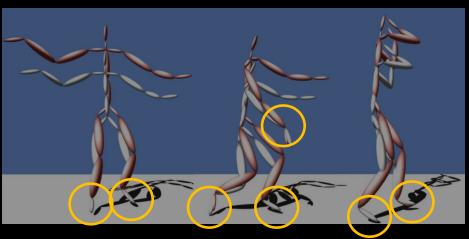

Toyohashi University of Technology

Kyushu Institute of Technology

Motion Adaptation



Environmental adaptation

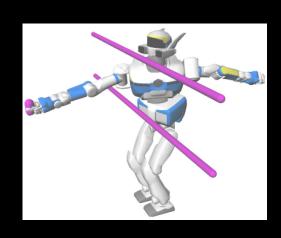

Adaptation to different character (retargeting)

Priorities of Adaptation Tasks

Inequality constraint

- 1. Range of joint motion
- 2. Collision avoidance
- 3. Ground contact
- 4. Reaching target
- 5. Similarity to source

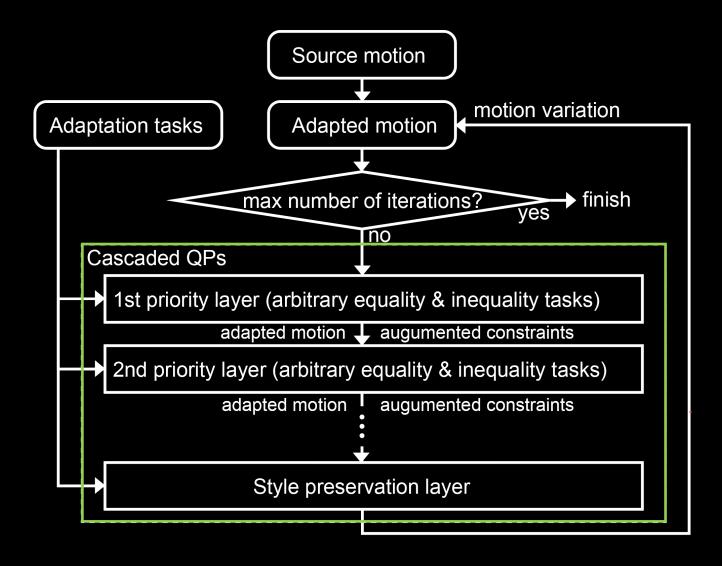
Inequality constraint

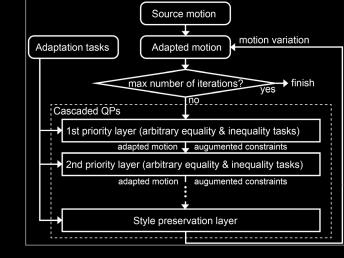

- 1. Range of joint motion
- 2. Foot motion
- 3. Hand pose at the hit
- 4. Similarity to source

Related Work — Adaptation, Prioritized IK

Spacetime optimization w/ soft & hard constraints

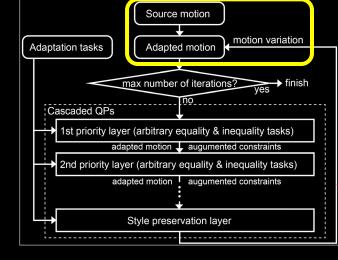
[Ho and Shum 2013] Soft constraints $\min f(\mathbf{m})$ (equality) s.t. $C(\mathbf{m}) = 0$ Hard constraints (equality)


- Hierarchical quadratic programming [Kanoun et al. 2011]
 - Arbitrary number of priority layers
 - Equality and inequality tasks



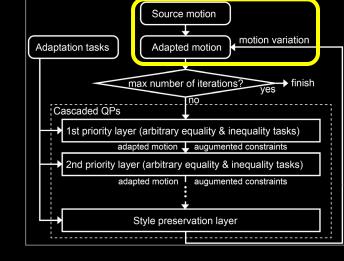
Approach¹

- Relaxing the constrained least-square problem
 - Iterative optimization of motion variables
- Equality & inequality spatiotemporal tasks
 - Joint position, Joint angle, Positional / angular displacement, Distance
 - Cascading priority layer
- Cascaded series of quadratic programs (QPs)
 - satisfy the tasks as much as possible while preserving the fulfillment of the more important tasks

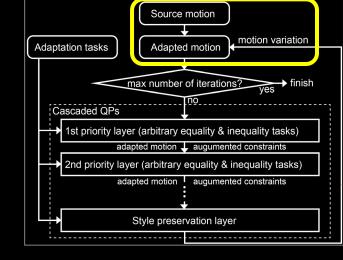

Overview

$$\min_{\Delta \mathbf{m}_{u}} \operatorname{diff}(\mathbf{m}_{u} + \Delta \mathbf{m}_{u}, \overline{\mathbf{m}})$$
s. t. $\forall e \in E, \ \mathbf{A}_{e} \Delta \mathbf{m}_{u} = \Delta \mathbf{b}_{e}$
s. t. $\forall i \in I, \ \mathbf{C}_{i} \Delta \mathbf{m}_{u} \leq \Delta \mathbf{d}_{i}$

$$\mathbf{m}_{u+1} = \mathbf{m}_{u} + \Delta \mathbf{m}_{u}, \ \mathbf{m}_{0} = \overline{\mathbf{m}}$$



Motion variation


$$\min_{\Delta \mathbf{m}_u} \operatorname{diff}(\mathbf{m}_u + \Delta \mathbf{m}_u, \overline{\mathbf{m}})$$

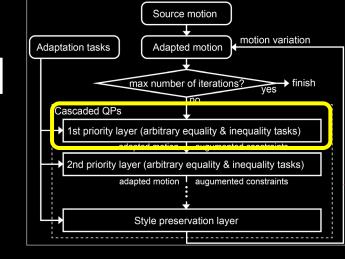
$$\forall e \in I, \ \mathbf{C}_i \Delta \mathbf{m}_u \stackrel{\mathsf{Source}}{=} \mathbf{motion}$$
 s.t. $\forall i \in I, \ \mathbf{C}_i \Delta \mathbf{m}_u \leq \Delta \mathbf{d}_i$

$$\mathbf{m}_{u+1} = \mathbf{m}_u + \Delta \mathbf{m}_u$$
, $\mathbf{m}_0 = \overline{\mathbf{m}}$

$$\min_{\Delta\mathbf{m}_u} \operatorname{diff}(\mathbf{m}_u + \Delta\mathbf{m}_u, \overline{\mathbf{m}})$$

$$\forall e \in E, \ \mathbf{A}_e \Delta \mathbf{m}_u = \Delta \mathbf{b}_e$$
 Variation of task variables Set of equality, Task Jacobian $\Delta \mathbf{d}_i$ wrt motion vector
$$\mathbf{m}_{u+1} = \mathbf{m}_u + \Delta \mathbf{m}_u, \ \mathbf{m}_0 = \overline{\mathbf{m}}$$

$$\min_{\Delta \mathbf{m}_u} \operatorname{diff}(\mathbf{m}_u + \Delta \mathbf{m}_u, \overline{\mathbf{m}})$$

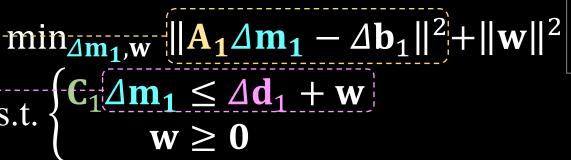

s.t.
$$\forall e \in E$$
, $\mathbf{A}_e \Delta \mathbf{m}_u = \Delta \mathbf{b}_e$
 $\forall i \in I$, $\mathbf{C}_i \Delta \mathbf{m}_u \leq \Delta \mathbf{d}_i$

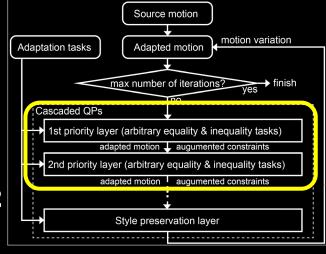
Variation of task variables

Set of inequality tasks Task Jacobian
$$\mathbf{m}_0 = \mathbf{m}$$
 wrt motion vector

Relaxation of Constrained Optimization [Kanoun et al. 2011]

$$\min_{\Delta \mathbf{m}_{u}} \operatorname{diff}(\mathbf{m} + \Delta \mathbf{m}_{u}, \overline{\mathbf{m}})$$
s.t.
$$\begin{cases} \forall e \in E, & \mathbf{A}_{e} \Delta \mathbf{m}_{u} = \Delta \mathbf{b}_{e} \\ \forall i \in I, & \mathbf{C}_{i} \Delta \mathbf{m}_{u} \leq \Delta \mathbf{d}_{i} \end{cases}$$


Relaxed equality tasks of the first priority layer


Slack variable

$$\begin{aligned} & \min_{\Delta m_1, w} \| |A_1 \Delta m_1 - \Delta b_1\|^2 + \| w \|^2 \\ & \text{s.t.} & \begin{cases} \mathbf{C}_1 \Delta m_1 \leq \Delta \mathbf{d}_1 + \mathbf{w} \\ & \mathbf{w} \geq \mathbf{0} \end{cases} \end{aligned} \text{Relaxed inequality tasks of the first priority layer}$$

Cascaded Series of QPs

[Kanoun et al. 2011]

first layer

second layer

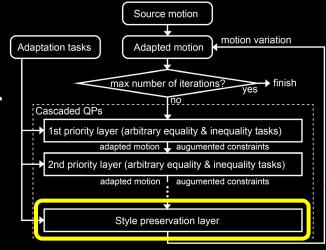
$$\min_{\Delta \mathbf{m}_2, \mathbf{w}} \|\mathbf{A}_2 \Delta \mathbf{m}_2 - \Delta \mathbf{b}_2\|^2 + \|\mathbf{w}\|^2$$

 $\mathbf{A_1} \Delta \mathbf{m_2} = \mathbf{A_1} \Delta \mathbf{m_1}$

 $C_1^{\text{fes}} \Delta \mathbf{m_2} \leq \Delta \mathbf{d}_1^{\text{fes}}$

 $\mathbf{C}_{1}^{\text{inf}} \Delta \mathbf{m}_{2} = \mathbf{C}_{1}^{\text{inf}} \Delta \mathbf{m}_{1}$

 $\mathbf{A}_{2} \Delta \mathbf{m}_{2} = \Delta \mathbf{b}_{2}$ $\mathbf{C}_{2} \Delta \mathbf{m}_{2} \leq \Delta \mathbf{d}_{2} + \mathbf{w}$


least-square solution of equality tasks

feasible inequality tasks

violated inequality tasks

Tasks of the second priority layer

Style Preservation Layer

 $\min_{\Delta \mathbf{m}_L} \operatorname{diff}(\mathbf{m} + \Delta \mathbf{m}_L, \overline{\mathbf{m}})$

$$\mathbf{A_1} \Delta \mathbf{m}_L = \mathbf{A_1} \Delta \mathbf{m_1}$$

$$\mathbf{A}_{L-1}\Delta\mathbf{m}_{L} = \mathbf{A}_{L-1}\Delta\mathbf{m}_{L-1}$$

$$\mathbf{C}_1^{\mathrm{fes}} \Delta \mathbf{m}_L \leq \Delta \mathbf{d}_1^{\mathrm{fes}}$$

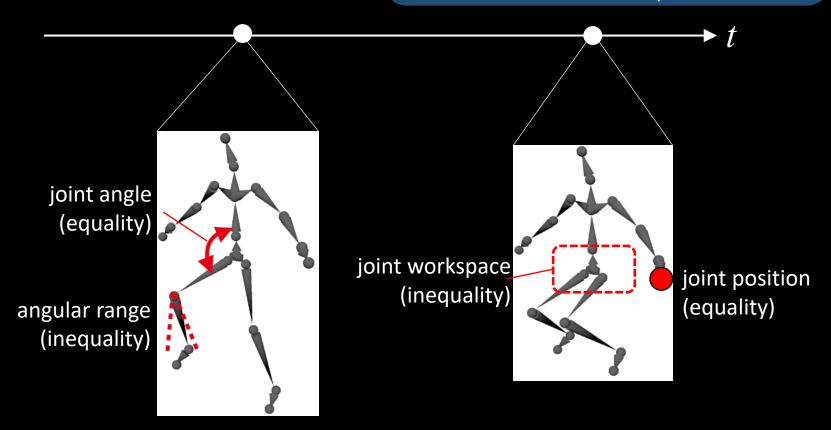
s.t. $\left\{ \begin{array}{c} : \\ \mathbf{C}_{L-1}^{\text{fes}} \Delta \mathbf{m}_{L} \leq \Delta \mathbf{d}_{L-1}^{\text{fes}} \end{array} \right.$

$$\mathbf{C}_1^{\inf} \Delta \mathbf{m}_L = \mathbf{C}_1^{\inf} \Delta \mathbf{m}_1$$

$$\langle \mathbf{C}_{L-1}^{\mathrm{inf}} \Delta \mathbf{m}_{L} = \mathbf{C}_{L-1}^{\mathrm{inf}} \Delta \mathbf{m}_{L-1} \rangle$$

least-square solution of equality tasks

feasible inequality tasks


violated inequality tasks

Per-frame Task

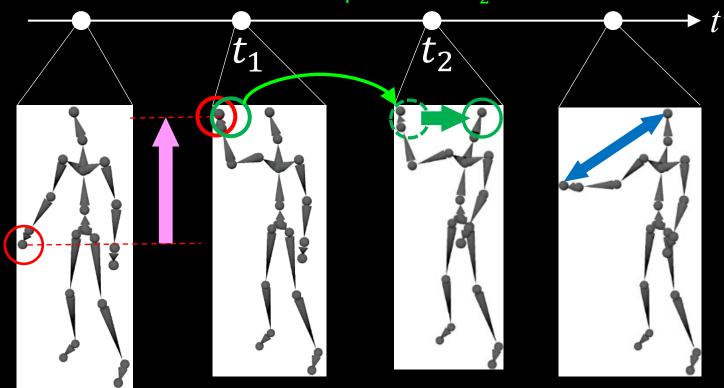
$\mathbf{A}_{l}\Delta\mathbf{m}_{l} = \Delta\mathbf{b}_{l}$

Jacobian of joint position/angle wrt motion vector

displacement toward target position

Spatiotemporal Relation

 $\mathbf{A}_{I}\Delta\mathbf{m}_{I}=\Delta\mathbf{b}_{I}$

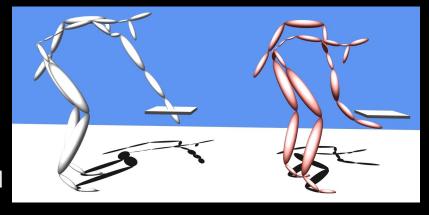

Jacobian of inter-joint position/inter-joint toward target angle wrt motion vector relational value

displacement

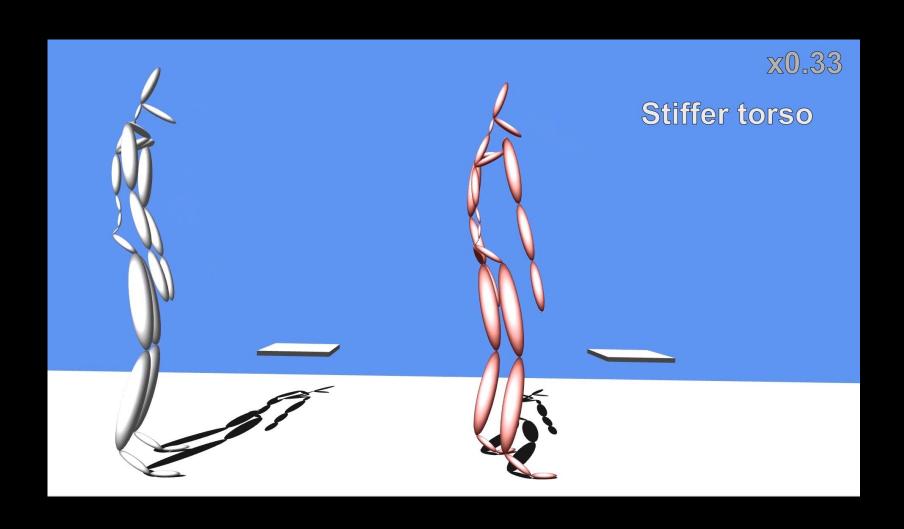
Displacement of the same joint between distant time frames

Displacement between the right hand at t_1 and the head position at t_2

Distance between the right hand and head at the same time instant


Combinational Tasks

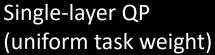
- Joint hull shape
 - Spatial relation among three or more joints
- Curvature of joint trajectory
 - Temporal derivative of joint configuration
 - e.g. monotonic increase
- Center of mass
 - Weighted combination of joint positions


Reaching Motion

Adaptation of Reaching Motion

- 1-a. Range of joint motion
- 1-b. Poses at both end frames
- 2-a. Foot positions
- 2-b. Obstacle avoidance
- 3. Goal position of right hand

Reaching Motion — Avoidance > Goal




Reaching Motion — Avoidance < Goal

Reaching Motion - Weighting strategy

Single-layer QP (nonuniform task weight)

Tennis Backhand Stroke

Retarget of Two-Fisted Backhand Stroke

- 1. Range of joint motion
- 2. Foot positions
- 3. Right hand trajectory around the shooting moment
- 4. Joint hull shape among the wrists, left hand, and right hand

Walking on Stairs

Walking on Flat Surface to Climbing Up Stairs

- 1. Range of joint motion
- 2. Foot positions during ground contact
- 3. Vertical foot movement during flight (inequality)

Multi-character Interaction

Multi-character Interaction

The white character stretches his right hand to grasp the other's right hand, and the red character attempts to avoid it

- 1. Range of joint motion
- 2. Foot positions
- 3. Minimal distance between the right hands
- 4. Contact between the right hands

Summary

- Strictly prioritized equality and inequality tasks
- Stable solution even for complicated scenario
- Flexible but unintuitive design of adaptation tasks
- High computational cost
- Purely kinematic framework