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ABSTRACT
A clip of character motion can be adapted to a change in environ-
ment or to another character of a different body size via a numerical
optimizationwith several tasks including the objective ofmovement
and physical constraints. Conventional methods, however, lack the
design flexibility of such adaptation tasks because of the simple
problem formulation. We propose a motion adaptation framework
based on a cascaded series of quadratic programs. Our system in-
troduces a layered structure of strictly prioritized tasks, each layer
of which comprises arbitrary types of equality and inequality tasks.
The cascaded solver identifies the optimal solution in each layer
without affecting the fulfillment of the higher layer tasks. The stable
computation of the cascaded optimization supports the intuitive
design of the spacetime tasks even for novice users. The capability
of our method was demonstrated through several experiments of
motion adaptationwith prioritized inequality tasks, such as environ-
mental adaptation and adaptation of interactive behavior between
two characters.
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1 INTRODUCTION
Motion adaptation is a fundamental technique to deform hand-
crafted or motion-captured character animations for adapting to
environmental change and another character of a different body
size. For example, climbing motions can be adapted to a different
climbing wall by modifying the whole body movement to reach
the different location of graspable portions while preserving the
stepping pattern of hands and feet. The adaptation solver deforms
the source motion to satisfy several tasks and constraints of the
character kinematics and dynamics. Although these terms are inter-
changeable depending on the context, task can mainly be used as a
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kinematic or dynamic goal of movement, including trajectory track-
ing of the end-effectors, a target joint angle at a time instant, and
the minimization of kinetic energy. A constraint, however, should
be a range of joint motion, joint torque limit, and foot position
during ground contact.

Many conventional methods formulate the motion adaptation
as a constrained spacetime optimization problem. In addition, most
only address equality tasks, such as the goal position of an end-
effector and the target joint angle, because they are intuitive for
designers to interactively edit the character animation. However,
inequality tasks also play a significant role in many possible scenar-
ios. Imagine that a reaching motion in which a character reaches
its arm into a hole is retargeted to another character of a different
size. The conventional techniques require the trajectory of the hand
and arm to be precisely planned as equality tasks to avoid collision
with obstacles, even if there are many other feasible solutions. Such
collision avoidance should be naturally formulated using simple
inequality constraints and the adaptation solver must find the opti-
mal motion that simultaneously satisfies such multiple inequality
and equality tasks.

Moreover, we need to assign a strict order of priorities among
multiple tasks because they are often in conflict with each other. For
instance, the highest priority is probably assigned to constraints of
the range of jointmotion to certainly avoid an invalid pose. Collision
avoidance is also important to create a physically valid animation.
Other tasks, such as reaching and gazing, might have a relatively
lower priority. A common approach uses a weighted combination
of task functions for prioritization. However, the weighting strategy
frequently causes unstable computation and a certain amount of
violation even to the highest priority task because it minimizes the
weighted sum of the task errors.

We propose a motion adaptation framework using a cascade
of quadratic programs. Our system introduces a layered structure
of strictly prioritized tasks, each layer of which is composed of
many types of equality and inequality tasks. The quadratic pro-
gramming solver optimizes motion to satisfy the tasks at each
priority layer as much as possible while preserving the fulfillment
of the more important higher layer tasks. In addition, we introduce
several spacetime tasks that provide intuitive control for motion
adaptation. The prioritized spacetime tasks allow novel adaptation
methodologies, such as adaptation to the change in environmental
geometry and behavioral adaptation in multi-character interactions.
Our cascading framework provides a stable computation even for
such a complicated scenarios. The technical contributions of this
paper are as follows.
• Motion adaptation using a layered structure of strictly prior-
itized equality and inequality tasks
• Spacetime tasks that allow flexible motion adaptation

The disadvantage of our method is the high computational cost
of cascaded quadratic programs, which is inapplicable to interactive
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computation. Our purely kinematic framework does not incorporate
physical laws and cannot modify movement timing and duration.
Despite these limitations, our generalized framework provides a
stable solution for an arbitrary design of hierarchically prioritized
tasks.

2 RELATEDWORK
Several methods have been proposed to adapt a motion to a different
environment or to another character while maintaining positions
or rotational angle of the constrained joints [Choi and Ko 2000;
Gleicher 1998; Monzani et al. 2000; Shin et al. 2001]. Semantics-
preserving methods enable more aggressive motion retargeting
among characters of highly-different topologies [Abdul-Massih et al.
2017; Celikcan et al. 2015; Hecker et al. 2008]. Spatial relationship-
preserving motion adaptation [Ho et al. 2010] utilizes as-rigid-as-
possible deformation of a volumetric mesh defined by the skeletal
joints. This fundamental idea has been employed in several more re-
cent works, such as interactive motion adaptation [Al-Asqhar et al.
2013; Bernardin et al. 2017; Molla et al. 2017; Tonneau et al. 2016]
and the interaction-preserving adaptation for skinned characters
[Jin et al. 2018; Liu et al. 2018]. Our spacetime formulation is simi-
lar to that of the constrained motion adaptation method [Ho and
Shum 2013]. This method formulates the motion adaptation as a
two-layered least-square problem with so-called soft and hard con-
straints. Our method uses a more general optimization framework
to allow flexible design of the multi-layered structure of strictly
prioritized spacetime tasks.

The inverse kinematics (IK) technique is sometimes used as a
basic technique for motion adaptation and retargeting [Hecker
et al. 2008; Monzani et al. 2000]. Many IK methods in computer
animation are used to manipulate an end-effector of the character
skeleton [Aristidou and Lasenby 2011]. For example, a real-time
application frequently employs an analytical IK method for solving
a floor contact constraint to prevent the penetration of feet into the
ground. Several Jacobian-based IK methods have been proposed
to strictly prioritize equality tasks by utilizing the redundancy of
the articulated skeleton [Baerlocher and Boulic 2004; Yamane and
Nakamura 2003]. Strict task priority is incorporated into a quadratic-
programming-based method [Escande et al. 2010]. The hierarchical
quadratic programming (HQP) method was proposed to address an
arbitrary number of priority layers consisting of both equality and
inequality tasks [Kanoun et al. 2011]. We extend this HQP-based
IK solver to a motion adaptation problem.

Motion adaptation can be assumed to be a special case of con-
strained motion deformation. Per-frame IK techniques have been
used to deform a pose in a reference motion at each time frame.
For example, a data-driven method synthesizes a manipulation
motion using per-frame IK such that the character’s hands follow
the path planned using a randomized search algorithm [Yamane
et al. 2004]. The as-rigid-as-possible motion deformation technique
[Kim et al. 2009] modifies the trajectory of joint positions using
the gradient-domain curve editing method and deforms the pose at
each frame using the per-frame IK. The sketch-based motion defor-
mation technique [Choi et al. 2016] employs a similar approach to
adapt the skeletal motion to follow the sketched trajectory of end-
effectors. However, these methods allow only using equality tasks

on the skeletal configurations, and are not applicable to impose
an inequality task on the kinematic relationship between distant
time frames. Furthermore, they use a simple weighting strategy to
combine multiple tasks with prioritization.

Quadratic programming has been applied to physically-based
motion control [da Silva et al. 2008a,b]. These methods generate
a physically valid skeleton motion that adapts to the simulation
environmentwhile tracking a referencemotion sequence. Themulti-
objective control method [Abe et al. 2007] uses a weighted combi-
nation of objective functions to control the importance of multiple
tasks. QP-based optimization with weighted task functions is also
used for deforming multi-character interactions [Liu et al. 2006].
Another physics-based controller generates several types of loco-
motion by optimizing strictly prioritized kinematic tasks [de Lasa
et al. 2010]. This method assumes that the inequality constraints
be imposed only at the highest priority layer. In contrast, our ap-
proach uses a cascaded series of QPs [Escande et al. 2014; Kanoun
et al. 2011] for a flexible design of the hierarchy of equality and
inequality tasks.

Physically based motion adaptation is another approach to re-
target motion to new characters or to adapt a motion to different
environments [Borno et al. 2018; Hodgins and Pollard 1997; Liu
et al. 2005; Popović and Witkin 1999]. These methods provide phys-
ically valid results using kinematic and dynamic constraints that
consider mass, force, and inertia moment. Our current system can
only address kinematic tasks and an extension to such a physically
based approach is an interesting future direction.

3 OVERVIEW
Our adaptation method is designed for a skeletal motion of an
articulated character. Let xf be a vector of the skeleton pose at
the f -th timeframe that consists of the joint rotational angles θ j ,f
and the global position proot,f and orientation θ root,f of the root
node, and ∆xf be its variation, where j denotes the index of rota-
tional joint. The skeleton motion is the concatenation of the skele-
ton pose vectors over all the timeframes as m = x⌢1 x⌢2 · · ·⌢ xF
where F denotes the number of timeframes and ⌢ is the symbol
of vector concatenation. The motion variation is also defined as
∆m = ∆x⌢1 ∆x⌢2 · · ·⌢ ∆xF . See Appendix A for details of our im-
plementation of the motion vector and its variation.

Our system requires manual operations to specify the adaptation
tasks and assign the priority order to each. For example, to adapt
a reaching motion to a different environment, we should design
a range of joint motion constraint, a task to reach the goal, and
collision avoidance constraints, in which the highest priority might
be assigned to the two constraints while the reaching task should
have a lower priority. The hierarchical structure of the prioritized
tasks is then composed such that each layer contains the tasks of
the same priority level. Optionally, we can also assign weights to
the tasks to control the relative importance in every single layer. In
addition, style preservation layers (§5.4) are added with the lowest
priority to guarantee the adaptation result appears similar to the
source motion.

Cascaded optimization is then performed to satisfy the tasks
and constraints by deforming the source motion m̄. Our method is
formulated as a constrained least-squares problem with equality
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Figure 1: Cascaded optimization procedure

and inequality constraints on the character kinematics. We employ
an iterative approach to solve the optimization problem that is
nonlinear with respect to the motion variables. At theu-th iteration,
the motion vector is updated as mu+1 = mu + ∆mu where m1 =
m̄ and the motion variation ∆mu is optimized via the cascaded
QPs. The adaption result m∗ is finally obtained after the manually
specified number of iterationsU as m∗ = mU +∆mU . For example,
given an equality task regarding the joint position, each iteration
step optimizes the motion variation using the equality task on
the joint position such that the constrained joint gradually moves
toward the goal every iteration.

In the next section, we explain the formulation of the cascaded
optimization procedure; the details of the task designs are explained
in §5

4 CASCADED ADAPTATION
The set of adaptation tasks consists of the linear equalitiesAe∆mu =

∆be , e ∈ E and inequalities Ci∆mu ≤ ∆di , i ∈ I with respect to
the motion variation ∆mu at the u-th iteration, where E and I de-
note the set of indices of the equality and inequality tasks; Ae and
Ci are the Jacobian of each task with respect to the motion vector
mu ; and ∆be and ∆di are the target variations of task variables,
respectively. Note that we discuss only the upper bound constraint
because it encompasses the lower by using the simple sign inver-
sion. The quadratic optimization at the u-th iteration is formulated
as follows:

min Emot (mu , m̄) , (1)
subject to ∀e ∈ E, Ae∆mu = ∆be , (2)

∀i ∈ I, Ci∆mu ≤ ∆di , (3)

where ·T denotes the matrix transpose, and Emot quantifies the
dissimilarlity between the adaptated motion and the source one. Al-
though the optimal solution should ideally satisfy all the tasks, the
problem might be ill-conditioned in which some tasks are overcon-
strained or conflicted with other tasks, which leads to infeasibility
or instability in numerical computation.

We extend the HQP framework [Escande et al. 2014; Kanoun
et al. 2011] that introduces a hierarchy of strictly prioritized tasks.
Figure 1 summarizes the optimization procedure of our framework.

The optimzation constaints of Equation 2 and 3 are classified into
multiple layers depending on their priorities, and the objective
function Emot of Equation 1 corresponds to the style preservation
layer at the bottom which is detailed in §5.4. The cascaded series of
quadratic optimization ensures that the solutions of higher priority
tasks are not influenced by the optimization in the lower layers. The
key idea in [Kanoun et al. 2011] is to achieve the tasks in each layer
in a least-square sense; the equality tasks are relaxed as the objective
function of the least-squares problem and the minimum amount of
violation of inequality tasks is tolerated by using slack variables.
The augmented constraints are also introduced to transmit the
information of all tasks of the higher layers to the lower tasks.

We here briefly describe the procedure of the cascaded optimiza-
tion; the details are explained in Appendix B. Let E(l ) and I(l ) be
sets of indices of equality and inequality tasks assigned at the l-th
priority layer where l = {1, · · · , L}, A(l ) and C(l ) be the row-wise
concatenation of (Ae )e ∈E(l ) and (Ci )i ∈I(l ) , and ∆b(l ) and ∆d(l )
be the concatenation of (∆be )e ∈E(l ) and (∆di )i ∈I(l ) , respectively.
The optimization problem in the l-th layer at the u-th iteration is
formulated as follows:

min
∆m(l )u ,σ (l )u

1
2

(
E
(l )
eq + E

(l )
ie

)
, (4)

E
(l )
eq :=

(
A(l )∆m(l )u − ∆b(l )

)T
W(l )eq

(
A(l )∆m(l )u − ∆b(l )

)
,

(5)

E
(l )
ie := σ (l )u

T
W(l )ie σ

(l )
u , (6)

subject to Ã∆m(l )u = ∆̃b , (7)

C̃∆m(l )u ≤ ∆̃d , (8)

C(l )∆m(l )u ≤ ∆d(l ) + σ (l )u , (9)

σ (l )u ≥ 0 , (10)

where σ (l )u represents the slack variable that corresponds to the
violation magnitude and W(l )eq and W(l )ie are diagonal matrices of
weights for equality and inequality tasks, respectively. After the
cascaded optimization of the L priority layers, the motion vector
mu is updated using the optimized variation in the lowest style
preservation layer as mu+1 = mu + ∆m(L)u .

Equation 5 represents the relaxed equality task and Equations
6, 9, and 10 correspond to the relaxed inequality task. These tasks
can be assumed to be soft constraints because they are imposed in a
least-square sense. However, the augmented constraints, denoted
by Equations 7 and 8, are imposed as hard constraints by using all
higher layer tasks. The augmented equality relation between Ã and
∆b̃ consists of the solutions of the equality tasks of all higher layers.
Moreover, inequality tasks that are violated in any layer among
the first to the (l − 1)-th layer are also included to prevent further
violation. The augmented inequality relation between C̃ and ∆d̃ is
composed of feasible solutions of the other inequality tasks in any
higher layer. The size of the augmented constraints increases in
the lower layers because the task at every layer is added to either
augmented constraint. In spite of a large number of constraints, the
optimization problem still has a feasible solution and guarantees
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stable computation because the augmented constraints are validated
in the higher layers.

5 TASK DESIGN
Each task constrains either the joint angle relative to the parent
or the joint position in the global coordinate system. Our iterative
solver optimizes the motion variation ∆mu for gradually moving
toward the target value of the tasks every iteration. Let Au and ∆b∗u
be the Jacobian matrix of the constrained variable with respect to
the motion vector mu and the target variations of the task variable
at the u-th iteration, respectively. The equality task is formulated
as follows:

Au∆mu = ∆b∗u , (11)
and the inequality task Cu∆mu ≤ ∆d∗u is similarly formulated by
replacing the notations and the relation sign.

In this section, we define two types of primitive tasks as shown
in Figure 2, in which the left-hand side Jacobian and the right-hand
side variation in Equation 11 will be substituted with task-specific
ones. More complex tasks are combined from the primitive tasks
as explained in §5.3. Finally, our design of the style preservation
layer is derived in §5.4. Note that we focus on the single iteration
and omit the iteration index u in the following subsections.

5.1 Unary Tasks
A unary task modifies an independent configuration of the i-th
joint in the f -th frame.

Joint angle Given the target angular variation ∆θ∗j ,f , the equal-
ity task is formulated as

Sj ,f ∆m = ∆θ∗j ,f .

The left-hand side Jacobian is substituted with the matrix Sj ,f ∈
ℜ1×dim(m) that has only a single identity element at the j-th joint
and the f -th frame as follows:

Sj ,f [1, i] =
{

1 if i = j + dim(x) · f
0 otherwise

.

When the target joint angle θ∗j ,f is specified, the right-hand side

variation is calculated at each iteration as ∆θ∗j ,f = α
(
θ∗j ,f − θ j ,f

)
where θ j ,f and α are the joint angle and the step size coefficient
to control the variation magnitude, respectively. For example, the
standing pose shown in Figure 2 (a1) is edited to Figure 2 (a2) by
specifying the target joint angle of the right hip as shown by the
solid red arrow. Moreover, the inequality task Sj ,f ∆m ≤ ∆θ∗j ,f
is also defined to maintain the angular displacement within the
upper bound, as shown by the dashed line segments in Figure 2 (a3).

Joint position Let Jj ,f be the Jacobian of the joint position
with respect to the motion vector. The equality task is defined as
follows:

Jj ,f ∆m = ∆pj ,f ,
Given the target location p∗j ,f , the target variation is calculated
based on the displacement from the current position at each iter-
ation, as ∆pj ,f = α

(
p∗j ,f − pi ,f

)
. For example, the standing pose

shown in Figure 2 (a1) is edited to Figure 2 (a3) by specifying the
target position of the waist as shown by the red circle.

The inequality position task is also defined to maintain the joint
position within a specified workspace, as shown by the dashed red
line in Figure 2 (a3). Furthermore, we can impose the positional
constraint only on selected components. For instance, if we im-
pose the constraint on the Y component of the joint position as
Jj ,f |Y ∆m = α

(
0 − pj ,f |Y

)
, the constrained joint is expected to be

on the X -Z plane.

5.2 Binary Relational Tasks
A binary relational task controls the spacetime relation between
two different joint configurations which are noted by the j-th joint
in the f -th frame and the k-th joint in the д-th frame. This type of
task is defined for angular displacement, positional displacement,
and distance. For example, the angular displacement of the same
joint between the different time frames is controlled if j = k holds
and the positional displacement between different joints in the
same frame is modified if f = д holds.

Inter-joint angle Given the target angular variation ∆δ∗θ , the
equality task is formulated as follows:(

Sj ,f − Sk ,д
)
∆m = ∆δ∗θ .

This task, in the case where j , k and f , д, is illustrated by the
solid green arcs in Figure 2 (b1) and (b2). In this example, the speci-
fied task is used to decrease the angular displacement between the
knee angle in the first frame and the elbow angle in the last frame.
The target variation is calculated by ∆δ∗θ = α

{
δ∗θ −

(
θ j ,f − θk ,д

)}
when the target angular displacement δ∗θ is given.

Inter-joint position The equality task for relative joint posi-
tion is derived using the Jacobian Jj ,f and Jk ,д as follows:(

Jj ,f − Jk ,д
)
∆m = ∆δ∗p .

When the target displacement δ∗p is specified, the target variation is

calculated by the following: ∆δ∗p = α
{
δ∗p −

(
pj ,f − pk ,д

)}
. Figure

2 (b1) and (b3) illustrates the condition of j = k and f , д by the
red solid line, where the right wrist in the first frame and that in
the last frame are nearer one another.

Inter-joint distance The relative distance task is designed
to constrain the Euclidean distance between two joint positions
and is derived from the first-order approximation of the distance
change with respect to the motion variation ∂

∂m

pj ,f − pk ,д
∆m,

as follows:{(
pj ,f − pk ,д

)T (
Jj ,f − Jk ,д

) /pj ,f − pk ,д
 } ∆m

= α
(
δ∗dist −

pj ,f − pk ,д
) ,

where δ∗dist and ∥ · ∥ denote the target distance and Euclidean norm,
respectively. This task is illustrated by the solid blue line in Figure
2 (b1) and (b4). In this example, the Euclidean distance between
the right hand in the first frame and the head in the last frame is



Motion Adaptation with Cascaded Inequality Tasks MIG ’19, October 28–30, 2019, Newcastle upon Tyne, United Kingdom

(a) Unary tasks (b) Binary relational tasks

(a1) Source pose (a3) Position task(a2) Angle task
(b1) Source motion (b3) Displacement task(b2) Angular displacement task (b4) Distance task

Figure 2: Two types of primitive tasks. The unary tasks are used (a2) to constrain the joint rotation to a certain angle or (a3)
the joint position to a certain location. The binary relational tasks constrain the (b2) angular displacement, (b3) positional dis-
placement, and (b4) distance between temporally-separated and/or different two joints. The two poses of each binary relational
task represent the first and last frame of the motion clip, respectively.

increased. Note that we can substitute the joint position pk ,д with
the fixed position. For example, the inequality task can be used to
tolerate the positional error between a joint and certain location.

5.3 Combinational Tasks
More complex tasks can be designed by combining the primitive
tasks, such as the following two types.

Joint hull shape The shape of the convex hull among three or
more joints can be constrained using a combination of inter-joint
distance tasks. For example, when the character transfers a large
box using both hands, the hands should remain parallel to the fixed
distance. This combinational task consists of three distance tasks
between the hand tips, between the wrists, and between the hand
tip and the wrist of the other side. The usage example of this task
is demonstrated in §6.2

Curve Shape The shape of the motion curve, including both
the spatial trajectory of the joint position and the temporal profile of
the joint angle, is constrained using the combinational displacement
tasks. For example, a monotonical increase in rotational angle of
the j-th joint over the time interval [F1, F2] is imposed using a set
of inequality tasks as follows:

∀f ∈ [F1, F2), −
(
Sj ,f +1 − Sj ,f

)
∆m ≤ θ j ,f +1 − θ j ,f .

A local maximum or minimum of the animation curve can be com-
pleted using this approach. For example, the local maximum at
the τ -th frame within the time period [F1, F2] is imposed by the
following

∀f ∈ [F1, τ ), −
(
Sj ,f +1 − Sj ,f

)
∆m ≤ θ j ,f +1 − θ j ,f ,

∀f ∈ [τ , F2),
(
Sj ,f +1 − Sj ,f

)
∆m ≤ −

(
θ j ,f +1 − θ j ,f

)
.

We can substitute the inequality tasks with the equality tasks for
imposing the certain displacement magnitude. The usage example
of the curve shape task is explained in §6.3

5.4 Style Preservation Layer
We impose a minimum motion variation and smooth velocity tasks
to preserve the content and style of the source motion in the lowest
layer, corresponding to Emot in Equation 1. The minimum variation
between the original motion and adapted motion is imposed using
the tasks for the positional displacement of the root translation and
the angular displacements on the root orientation and every joint
rotation as follows:

∀f , Jroot,f ∆m = βdisp
(
proot,f − proot,f

)
,

∀j, f , Sj ,f ∆m = βdisp
(
θ j ,f − θ j ,f

)
,

where βdisp is the weighting coefficients and θ j ,f and proot,f denote
the j-th joint rotation and the root translation of the source motion
in the f -th frame, respectively. The smooth velocity task is imposed
between neighboring timeframes using the positional displacement
tasks and angular displacement tasks as follows.

∀j, f ,
(
Sj ,f +1 − Sj ,f

)
∆m = βvel

{
0 − (θ j ,f +1 − θ j ,f )

}
,

∀f ,
(
Jroot,f +1 − Jroot,f

)
∆m = βvel

{
0 − (proot,f +1 − proot,f )

}
,

where βvel is the weighting coefficients for the velocity change.
The tasks in the style preservation layer are always in conflict with
the other tasks because they constrain the rotations of all joints.
Therefore, they must be given the lowest priority layer.

Note that several spacetime methods [Ho et al. 2010; Ho and
Shum 2013] impose the minimum variation task as the objective
function ∆mT ∆m of the optimization. However, our method can-
not employ this simple approach because the minimization of the
motion variation at each iteration does not guarantee the minimum
difference after multiple iterations.

6 RESULTS
We implemented our prototype system using C++ language and an
Operator Splitting Quadratic Program solver [Stellato et al. 2017]
for solving the QP of each priority layer. The step size coefficients
α for each task were set such that the magnitude of the target
variation decreases to less than 0.5 and the weighting coefficients
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for minimum variation βdisp and smooth velocity βvel were set to
1.0. The computational time was measured on a workstation with
dual Intel Xeon Gold 6154 CPUs of 3.0GHz and 128 GB RAM. All
resulting animations are supplied as supplemental material.

6.1 Adaptation of Reaching Motion
A reaching motion was adapted to the environmental change using
cascaded inequality tasks. The source motion reached the right
hand to a certain location as shown in Figure 3 (a). The right hand
showed a nearly-straight trajectory because there was no obstacle
between the actor and the goal location in the real capture session.
The source motion was adapted to reach the right hand for the
same goal while avoiding a roof place over the goal. We designed
five types of adaptation tasks as follows, where the priority order
is noted as a Roman number:

I-a Range of joint motion (inequality)
I-b Poses at both end frames tomatch the source ones (equality)
II-a Foot positions (equality)
II-b Obstacle avoidance (less-than),
III Goal position of right hand (equality)
The adapted motion successfully avoided the collision by mov-

ing the right hand downward earlier than the source as shown
in Figure 3 (b). The overall movement was visually similar to the
source motion thanks to the style preservation of the lowest layer.
Without the style preservation layer, jerky movement was caused
as shown in the supplemental video because there was no other
task to maintain temporal coherence. The computational time of
the iterative optimization was 65 s.

Figure 3 (c) shows the motion produced by fixing the root trans-
lation and using the narrower range of motion of the torso joints
to approximate the character having the stiffer torso. The character
failed to reach the goal but maintained the height of the wrist under
the roof according to the order of the task priority II-b→III. By
swapping the priority order of collision avoidance and reaching
the goal as III→II-b, the right hand could reach the goal while
colliding with the roof as shown in Figure 3 (d). Figures 3 (e) and (f)
show the same experiments but further limiting the range of joint
motion of the torso. Both motions failed to reach the goal and the
right wrist was at different positions according to the priority order.
These results confirm that the cascaded optimization strictly fulfills
the priority order of the adaptation tasks with stable numerical
optimization.

To clarify this advantage of the cascaded optimization, we used
a naive QP in which all the adaptation tasks were of the same pri-
ority in a single layer. Figure 3 (g) shows the resulting motion by
assigning a uniform weight to all tasks. The range of joint motion
tasks, corresponding to the stiffer torso joints, were obviously vi-
olated because the errors among all tasks were equalized. Next,
we assigned prioritized weights such that a more important task
had a greater weight as 10(5−PriorityOrder). For instance, the weight
for the range of joint motion task was 104 and that for the style
preservation was 1.0. However, the resulting motion collapsed, as
shown in Figure 3 (h), because of the numerical instability. This
experiment demonstrates the advantage of our framework which
achieves stable computation that supports intuitive task design
without tedious parameter tweaking.

(a) Source
     motion

(b) flexible torso (c) stiffer torso (d) stiffer torso

(e) stiffest torso (f) stiffest torso (g) single layer
   + uniform
      weighting

(h) single layer
   + power-law
      weighting

II-b→III II-b→III

II-b→III

III→II-b

III→II-b

Figure 3: Adaptation of the reaching motion to avoid the
roof. (a) Source motion. (b) Adapted motion using three-
layer tasks. (c)-(f) Narrowing down the range of motion of
the torso joints and swapping the layer II-b and III. (g) Non-
cascaded optimization with uniform task weights. (h) Non-
cascaded optimization with prioritized weighting according
to task importance.

At the same time, this experiment also clarified the design diffi-
culty of the obstacle avoidance task. This task was actually imposed
as an upper bound constraint on wrist position during a time inter-
val centered on the arrival time of the goal. The interval length was
heuristically specified without explicitly considering the roof size.
We could not formulate the roof avoidance as a simple inequality
because it uses conditional branching when the horizontal projec-
tion of the wrist enters that of the roof, the wrist must be under it.
To overcome this problem, we should develop a dynamic mecha-
nism for imposing the adaptation task depending on the character
configuration in our future work.

6.2 Motion Retarget with Kinematic Tasks
Our method is applicable to adapt a short motion clip to a new
character with arbitrary kinematic tasks such as the trajectory
of end-effectors and joint angles within a certain timeframe. The
basic assumption here is that the source and target character have
a similar skeletal topology in which each animating joint of the
source skeleton has a one-by-one correspondence with the target
skeleton. The retargeting process starts by simply copying the
source motion to the target character neglecting the violation of
physical or environmental constraints. The adaptation solver is
then applied to the target character to satisfy the given retargeting
tasks.
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(a) Forehand shot

(b) Two-fisted backhand shot

Figure 4: Retargeting of tennis strokes. (1) The forehand
stroke was retargeted to the taller character using three
tasks. (2) The two-fisted backhand stroke was retargeted to
the taller character using four-layered tasks.

Figure 4 (a) shows the retargeting of a forehand stroke in tennis
from a short actor to tall actor. The tall character tracked the foot
trajectory of the source motion which was formulated using the
joint position tasks. The right-hand trajectory around the shoot-
ing moment was also constrained to the source trajectory. In this
example, we designed three-layered tasks as follows:

I Range of joint motion (inequality)
II Foot positions (equality)
III Right hand trajectory around the shooting moment (equal-

ity)

The adapted motion successfully tracked the same trajectory of the
feet and right hand. The computational time of 20 iterations was
approximately 15 s.

Figure 4 (b) shows the motion retargeting of the two-fisted back-
hand stroke using the following four tasks.

I Range of joint motion (inequality)
II Foot positions (equality)
III Right hand trajectory around the shooting moment (equal-

ity)
IV Joint hull shape among the wrists, the left-hand tip, and

right-hand tip (equality)

The first to third tasks are equivalent to the case of the forehand
stroke. The joint hull shape task IV was added to maintain the
spatial relationship between the two hands to grasp the racket
using both hands. The priority of this task was relatively lower
than the others because a slight movement of hands is observed
in actual tennis play. As a result, the plausible movement of the
backhand stroke was produced using this four-layered optimization
which required 29 s.

6.3 Locomotion Adaptation to a Different
Environment

The next experiment adapted a walking motion on a flat surface
(Figure 5 (a)) to the stairs. We used the following adaptation tasks.

I Range of joint motion (less-than)
II Foot positions during ground contact (equality)
III Vertical movement of feet during flight (higher-than / lower-

than)

The second task was defined for each foot during ground contact.
The third task is a curve shape task to inherit the outline of the ver-
tical foot trajectory from the source motion. This task was defined
for each foot during the flighting phase in which the upper bound
constraint was imposed at the time when the foot of the source
motion moved downward, and the lower bound constraint when
the foot moved upward. The motion adaptation required 92 s with
80 iterations. The number of iterations was relatively higher than
that of the other experiments because it required more iterations
to address the large displacement in the character from the ground
to the top of the stairs.

Figure 5 (b) demonstrates that the adapted motion preserved
the walking motion content, particularly the vertical movement of
feet. Each foot moves down immediately before contact and moves
upward during the first half of the flighting phase; this behavior is
easily lost in the conventional spacetime optimization framework.
In fact, the feet penetrated through the steps without the inequality
task III as shown in Figure 5 (c).

The drawback of this adaptation is in the purely kinematic ap-
proach. The adapted motion appears somewhat unnatural because
the optimization does not consider the muscle activation, center of
the mass movement, zero moment point, and other physical crite-
ria. Although we could maintain the center of the mass position
within the valid workspace using a weighted combination of joint
position tasks, such an approach for static balance is not suited for
dynamic biped locomotion. Moreover, the motion of climbing up
stairs seems too fast because our method cannot modify the motion
timing and duration. Our future work will include investigation
of the temporal control and velocity editing in the optimization
framework.

6.4 Multi-character Interaction
Our framework can be applied to motion adaptation of multiple
characters by extending the optimization variables according to the
number of characters. This approach provides flexible editing of
the spatiotemporal relationship of multi-character interactions [Ho
et al. 2010; Jin et al. 2018; Liu et al. 2006]. During this experiment, the
source motions were the walking motion where the two characters
passed each other, as shown in Figure 6 (a). The adaptation made
the white character stretch his right hand to grasp the hand of the
red character and the red character attempted to avoid the grasp.
We designed four adaptation task types for this scenario.

I Range of joint motion (less-than)
II Foot positions (equality)
III Minimum distance between the right hands of two charac-

ters (greater-than)
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(b) adapted to the walking on stairs (c) adaptation without inequality tasks
     for vertial foot movement

(a) source motion of walking on flat floor

Figure 5: Environmental adaptation of walking motion on a flat floor to stairs. The white and red poses indicate the poses
immediately before the right and the left foot contacts the ground, respectively. (a) Source motion. (b) Adapted motion using
the inequality task III to constrain the vertical foot movement in which the flighting foot moved down immediately before
contact as the yellow circles indicate. (c) Adapted motion without task III where the flighting foot moved up toward the target
position and causing penetration through the steps.

(a) Source motion (b)  

    far distance

(c) 
    middle distance

(d) 
    near distance

(g) 
   near distance

(f)  
   middle distance

(e) 
    far distance

III→IV III→IV III→IV IV→III IV→III IV→III

Figure 6: Two characters passing each other. The white character reached his right hand to grasp the right hand of the red
character and the red character attempted to avoid the grasp. (a) Source walking motion. (b)-(d) Assigning the higher priority
of the grasping task IV compared to that of the avoidance task III. (e)-(g) Swapping the priority order of these tasks.

IV No positional displacement between the right hands when
passing each other (equality)

Figure 6 (b), (c), and (d) shows the adapted motion in which the
distance between the characters changed. In Figure 6 (b), the red
character did not take any avoidance reaction because the white
character could not reach her hand because of the long distance. The
avoidance behavior of the red character increased as the distance
between the character approached that shown in Figure 6 (c) and
(d). The average computational time was approximately 26 s.

Next, the priority order of the avoidance task III and the grasping
task IV were swapped under the same three situations. As Figure
6 (b), (c), and (d) shows, the red character stretched out her hand
because the minimum distance task was suppressed by the posi-
tional displacement task. These results were intuitively obtained by
changing the priority order without tweaking any other continuous
parameters.

7 DISCUSSION
We have proposed a motion adaptation framework using a cascaded
structure of prioritized equality and inequality tasks. Our method
extends the IK technique using hierarchical quadratic programs
to the problem of motion adaptation. We defined two types of
primitive spatiotemporal tasks and several combinational ones. The
experimental results demonstrated the capability and flexibility of
our method under several adaptation scenarios.

Our method formulates the motion adaptation problem as large
and sparse linear systems with many constraints. In practice, we
cannot process a long motion sequence with many tasks and pri-
ority layers because such a large system often results in a huge
computational cost that is quadratic in the number of frames and the
degrees of freedom of the character’s skeleton. We could improve
the computational performance using an advanced HQP solver
[Escande et al. 2014]. The block coordinate descent technique [Liu
et al. 2006] could also accelerate the optimization of multi-character
interaction.
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Another disadvantage is that our method can only kinemati-
cally optimize a motion clip of fixed length. The resulting motion
often shows physically implausible result because our method in-
volves no physical principle such as muscle energy minimization
and joint torque limit. Moreover, our method does not modify the
motion timing and duration, which limits the flexibility in creat-
ing variations from a single clip. One possible solution might be
to integrate timewarp parametrization [Liu et al. 2006] into our
framework. Generalization of hierarchically prioritized tasks in
physically-based motion adaptation [de Lasa et al. 2010] is another
challenging problem.

Our future work will include an investigation of an intuitive
interface for designing spacetime tasks. For example, complex colli-
sion avoidance cannot be easily incorporated into our framework
because the QP solver can only address task formulated as a linear
relation. We should develop an adaptive mechanism of task genera-
tion for more complex adaptation. It is a more challenging problem
to automatically optimize the priority order for each scenario.
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A IMPLEMENTATION OF MOTION VECTOR
AND ITS VARIATION

We composed a motion vector m with a three-dimensional transla-
tion vector of the root joint and rotational quaternions of each joint
rotation. The motion variation ∆m consists of 3D displacement of
the root position and a logarithm map of a joint rotational quater-
nion as used in [Choi et al. 2016]. For example, a joint rotation at
the u-th iteration is represented as a quaternion θu , and the motion
variation ∆θu is actually a logarithmmapνu . The update of the mo-
tion vector is therefore computed by the product of the rotational
quaternion and the exponential of the logarithm map as follows:
θu+1 = exp (νu )θu rather than the simple addition θu +∆θu . Each
Jacobian matrix is also computed with respect to the logarithm map
[Grassia 1998]. We experimentally confirmed that this approach

http://arxiv.org/abs/math.OC/1711.08013
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achieves singularity-free, and gimbal lock-free stable computation,
rather than using Euler angles.

B HIERARCHICAL QUADRATIC PROGRAMS
We here explain the optimization algorithm for the hierarchical
quadratic programs [Kanoun et al. 2011]. The optimization in the
first layer starts with the equality tasks which are relaxed as the
objective function and the inequality tasks which is also relaxed
using slack variables. All the augmented constraints, i.e. Ã, ∆̃b, C̃,
and ∆̃d, are initialized to empty before entering the first layer. The
optimization in the first layer is thus formulated as follows:

min
∆m(1),σ (1)

1
2

(
E
(1)
eq + E

(1)
ie

)
,

E
(1)
eq :=

(
A(1)∆m(1) − ∆b(1)

)T
W(1)eq

(
A(1)∆m(1) − ∆b(1)

)
,

E
(1)
ie := σ (1)u

T
W(1)ie σ (1),

subject to C(1)∆m(1) ≤ ∆d(1) + σ (1),

σ (1) ≥ 0.

Note that we can exceptionally impose some equality tasks as hard
constraints if feasible.

The augmented constraints are then updated using the solution
∆m(1) to prevent further violation of infeasible tasks in the second
priority layer. First, the current solution of the equality tasks is
added to the augmented equality constraints as follows:

Ã ← Ã ⊕ A(1),
∆̃b ← ∆̃b ⊕ A(1)∆m(1),

where ⊕ denotes the row-wise matrix concatenation. Each element
of inequality tasks is then evaluated whether c(1)h ∆m(1) ≤ ∆d

(1)
h is

satisfied, where c(1)h and∆d(1)h are theh-th row vector ofC(1) and the
h-th element of ∆d(1), respectively. If the h-th subtask is satisfied,
the same task is added to the augmented inequality constraints as
follows:

C̃ ← C̃ ⊕ c(1)h ,

∆̃d ← ∆̃d ⊕ ∆d
(1)
h .

However, the infeasible subtask is added to the augmented equality
task to prevent further violation in the lower layers as follows:

Ã ← Ã ⊕ c(1)h ,

∆̃b ← ∆̃b ⊕ c(1)h ∆m(1).

The update of the augmented constraints is repeated for all task
elelements h.

Next, the second priority layer optimizes the motion variation
with the updated augmented constraints and the tasks in the second

layer as follows:

min
∆m(2),σ (2)

1
2

(
E
(2)
eq + E

(2)
ie

)
,

E
(2)
eq :=

(
A(2)∆m(2) − ∆b(2)

)T
W(2)eq

(
A(2)∆m(2) − ∆b(2)

)
,

E
(2)
ie := σ (2)T W(2)ie σ (2),

subject to Ã∆m(2) = ∆̃b,

C̃∆m(2) ≤ ∆̃d,

C(2)∆m(2) ≤ ∆d(2) + σ (2),

σ (2) ≥ 0.

The proceeding priority layers are recursively optimized using the
same procedure. Finally, the optimal motion variation is obtained
as the solution in the lowest priority layer ∆m(L).
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