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Figure 1: Example-based helper bone rigging for synthesizing a variety of skin deformations. (a) Multiple pairs of primary skeleton pose
and desirable skin shapes are provided as example data. (b) Optimal rotation and translation of helper bones for each example are estimated
using an iterative optimization. (c) The helper bone motion controller is constructed as a regression function that maps the primary skeleton
pose to the helper bone transformations. (d) Artifact-free, stylized skin deformation can be synthesized in real-time using linear blend skinning
(LBS) with the procedurally controlled helper bones.

Abstract

Helper bone system has been widely used in real-time applications
to synthesize high-quality skin deformation with linear blend skin-
ning. Even though this technique provides a flexible yet efficient
synthesis for a variety of expressive skin deformations, rigging with
helper bones is still a labor-intensive process. In this study, we pro-
pose a novel method for building helper bone rigs from examples.
We used multiple pairs of skeleton pose and desired skin shapes
for our system. First, the system estimates the optimal skinning
weights and helper bone transformations to reconstruct each exam-
ple shape. Next, we construct a regression model which maps a
primary skeleton pose to the helper bone transformations. The re-
gression model enables a procedural control over the helper bones
according to the primary skeleton. This is done at a lower com-
putational cost and memory footprint. In addition, artists can edit
the regression coefficient of the helper bone controller to modify
deformation behavior. We demonstrate our system’s potential by
synthesizing stylized skin deformations in real-time.
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1 Introduction

Linear blend skinning (LBS) has been widely used for broad range
of interactive applications such as games. Most real-time graphics
engines support the LBS algorithm because of its simplicity and
efficiency. However, this algorithm has so-called candy-wrapper
and elbow-collapse artifacts, which cause an unwanted shrink in
the skin mesh. One practical solution to minimize the LBS artifacts
is to add extra bones, called helper bones. The helper bones work
with the primary character skeleton to fix the collapse and crease
in the skin mesh. An animation engine synthesizes the movement
of the helper bones rather than a baked animation. This technique
is used because the character movement is often synthesized dur-
ing runtime process using some procedural techniques like inverse
kinematics. The helper bone controller is designed as a polynomial
function that maps the primary skeleton pose to the rotation, trans-
lation, and scale of the helper bone. This technique minimizes the
LBS artifacts and stylizes skin deformations. Figure 1(a), shows
an example of a limb model whose primary skeleton consists of a
shoulder and an elbow. The two helper bones are inserted into the
character rig, and are controlled with the shoulder and elbow mo-
tions. This minimizes the elbow-collapse artifact and emulates the
behavior of the biceps as shown in Figure 1(d).

Even though the helper bone system requires computational cost
to execute the bone controller, this extra cost is permissible for
practical productions. This allowance is due to the significant im-
provement in the quality of the skin deformation while maintaining
the real-time performance. In addition, since rig artists set up the
helper bones, animators only have to create primary skeleton mo-
tions. They do not require prior knowledge about the helper bone
system, which is compatible with common animation workflows.

The helper bone system poses one practical issue of unintuitive rig-
ging process. As helper bones rarely have anatomical meaning, it



is difficult to design their transformations and skinning weights. In
addition, designing a helper bone controller is further unintuitive
because the controller is often designed as a polynomial function.
Rig artists have to specify the polynomial order, polynomial coef-
ficients, and pose variables of the primary skeleton that must be
used. Hence, several days of manual labor are required to build a
production quality character rig with helper bones by a trial-and-
error method.

In this study, we propose an example-based method to build char-
acter rigs with helper bones. We use a two-step algorithm to insert
helper bones into a pre-designed primary skeleton rig using exam-
ple pairs of primary skeletal pose and desirable skin shape. In the
first step, our system estimates the optimal skinning weights and
helper bone transformation for each example as shown in Figure
1(b). We used a modified version of the skinning decomposition
algorithm [Le and Deng 2012; Le and Deng 2014] to incrementally
insert rigid helper bones into the character rig. In the second step,
the helper bone movement is calculated by a polynomial function
of the primary skeleton movement. This is displayed in Figure 1(c).
Our method allows artists to modify the polynomial coefficients for
editing the skin deformation. To the best of our knowledge, this
is the first method proposed to automate the helper bone rigging.
We believe that the proposed system is compatible with common
production workflows.

2 Related Work

Several methods have been proposed to synthesize high-quality
skin deformation in real-time. The LBS model computes the
deformed vertex position by transforming each vertex through a
weighted combination of bone transformation matrices [Magne-
nat-Thalmann et al. 1988]. Multi-weight enveloping [Wang and
Phillips 2002; Merry et al. 2006] extends the LBS model by adding
a weight to each of the matrix elements. The non-linear skinning
technique uses a dual quaternion instead of a transformation matrix
to overcome the LBS artifacts. However, while bending, a side ef-
fect called the bulging artifact occurs [Kavan et al. 2007]. Several
hybrid approaches have been proposed to blend bone transforma-
tions with lesser artifacts. Kavan et al.[2012] proposed a blend-
ing scheme that decomposes a bone rotation into a swing and twist
component, and then separately blends each component using dif-
ferent algorithms. The stretchable and twistable bone model [Ja-
cobson and Sorkine 2011] uses different weighting functions for
scaling and bone twisting, respectively. These methods success-
fully synthesize the artifact-free skin deformation, and do not dis-
cuss the stylized skin deformation such as muscle-skin deformation.

Morh and Gleicher [2003] had introduced the basic concept of a
helper bone system. In their work, helper bones were generated by
subdividing primary bones. In this technique, the bone scaling was
procedurally controlled according to the twist angle of the primary
bone thus minimizing the candy-wrapper artifact. This technique
has been extended into the gaming industry [Parks 2005; Kim and
Kim 2011]. In these real-time works, the scale, rotation and trans-
lation of the helper bones are manipulated. This method minimizes
the LBS artifacts while producing stylized skin deformations such
as muscle bulging and skin sliding. Rig artists have to manually
build the helper bone rig and its motion controller by trial-and-error.
To avoid this manual effort, several methods have been proposed
to optimize the skinning weights using a static shape [Baran and
Popović 2007; Jacobson et al. 2011], or a set of multiple shapes
[Wang and Phillips 2002; Mohr and Gleicher 2003; Miller et al.
2011]. However, there is no automated method to optimize the
helper bone transformations.

Our method is closely related to the skinning decomposition tech-

nique. This method extracts optimal bone transformations and skin-
ning weights from a set of example shapes. The skinning mesh an-
imation model [James and Twigg 2005] introduced a basic concept
for extracting bone transformations from a mesh animation. Ka-
van et al. [2010] used a dimensionality reduction technique to ef-
ficiently solve the skinning decomposition problem. The smooth
skinning decomposition with a rigid bone (SSDR) model intro-
duced a rigidity constraint on the bone transformation [Le and Deng
2012]. The SSDR model was later extended to extract hierarchi-
cally structured bone transformations from a mesh sequence [Le
and Deng 2014]. Our method is different from these techniques.
In this method, we assume that the hierarchical structure of the pri-
mary skeleton is designed by artists. We use several optimization
techniques of the SSDR model to insert helper bones into a primary
skeleton rig.

Scattered data interpolation, such as pose-space deformation (PSD)
models, is another approach that can be used to synthesize skin
deformation from example shapes [Lewis et al. 2000; Sloan et al.
2001; Kurihara and Miyata 2004]. The PSD model uses a ra-
dial basis function interpolation to blend example shapes accord-
ing to the skeleton pose. This technique produces high-quality skin
animations using an intuitive designing operation. However, the
PSD model requires a runtime engine to store all example data in
memory. In addition, the computational cost of the PSD increases
proportionally to the number of examples. Hence, many example
shapes cannot be used in a real-time system that has limited mem-
ory capacity.

The data-driven skinning method uses a regression model to map
a skeleton pose to vertex positions of a skin mesh [Park and Hod-
gins 2008]. This method constructs a regression model from a set
of example skeleton poses and skin shapes. However, the created
model cannot be easily edited by hand. This limitation is due to
the number of regression coefficients that are equal to the number
of dense motion-capture markers. In comparison, our method con-
structs a fewer number of bone controllers as polynomial functions.
This allows artists to manually modify the polynomial coefficients
and edit the deformation behavior.

3 Overview

Given a primary skeleton with D bones, the global transformation
matrix and bind pose matrix of d-th bone are denoted as 4 × 4
homogeneous matrices Gd and Bd, d = {1, · · · , D}, respectively.
The skinning matrix is computed with a product of the inverse bind
matrix and the global matrix as Sd = B−1

d Gd. The global trans-
formation matrix Gd can be decomposed into a product of the lo-
cal transformation matrix Ld and the parent’s global transformation
matrix as Gd = LdGp(d) where p(d) is the parent of d-th bone. Let
us indicate the bind position and skinning weights of j-th vertex
as v̄j and {wj,d}, respectively. The deformed vertex position vj is
computed as:

vj =
∑
d

wj,dv̄jSd (1)

where
∑

d wj,d = 1 is satisfied. Now, we add H helper bones,
where the skinning matrix of h-th helper bone are denoted as
Ŝh, h = {1, · · · , H}. The deformed vertex position vj is com-
puted with the skinning weights {ŵj,h} as:

vj =
∑
d

wj,dv̄jSd +
∑
h

ŵj,hv̄j Ŝh (2)

where
∑

d wj,d +
∑

h ŵj,h = 1 is satisfied. Given a set of N pairs
of an example shape and a primary skeleton pose {ṽj,n}, {G̃d,n},
n = {1, · · · , N}, our problem is formulated as a constrained least



square problem that minimizes the squared reconstruction error be-
tween the example shape and skin mesh with respect to the skinning
weights {wj,d}, {ŵj,h} and the skinning matrices {Ŝh,n} as:

min
{wj,d},{ŵj,h},{Ŝh,n}

∑
n

∑
j

∣∣∣ṽj,n −
∑
d

wj,dv̄jB−1
d G̃d,n

−
∑
h

ŵj,hv̄j Ŝh,n

∣∣∣
2

2
(3)

subject to Ŝh,n = R̂h,nT̂h,n, ∀h, n
wj,d ≥ 0, ŵj,h ≥ 0, ∀j, d, h∑

d

wj,d +
∑
h

ŵj,h = 1, ∀j
∑
d

|wj,d|0 +
∑
h

|ŵj,h|0 ≤ K, ∀j

where | · |α denotes Lα-norm. The first constraint is the rigidity
constraint that imposes a skinning matrix Ŝh,n to be a product of
a rotation matrix R̂h,n and translation matrix T̂h,n. The rigidity
constraint is applied because it is compatible with common anima-
tion engines, all of which support an efficient processing of both
transformations. The second, third, and fourth constraints are non-
negativity, partition of unity, and sparsity constraints on the skin-
ning weights. The sparsity constraint limits the maximum number
of bone transformations that can be blended to K bones. This con-
strained least square problem is solved with an iterative algorithm,
which is explained in the next section.

We then constructed a regression function fh that maps the primary
skeleton pose {Ld} to the helper bone transformation Ŝh as:

Ŝh ≈ fh (L1,L2, · · · ,LD) . (4)

We used a simple polynomial function for fh to allow artists to
manually edit the deformation behavior. The construction of the
regression function is explained in detail in Section 5.

During the run-time process, first the skinning matrix of each helper
bone is computed according to the primary skeleton pose. Second,
the deformed vertex position is efficiently computed in the standard
graphics pipeline with linear blend skinning.

4 Per-example Optimization of Helper Bone
Transformations

Optimal rigid transformations of helper bones are first estimated
for each example shape using the optimization procedure that is
summarized in Algorithm 1. Using the example data and the num-
ber of helper bones, our system inserts helper bones into the char-
acter rig in an incremental manner. Then, the helper bone trans-
formations for each example and skinning weights are optimized
using an iterative method. The overall procedure is similar to the
SSDR model, where the skinning weights and bone transformations
are alternately optimized by subdividing the optimization problem
(Equation 3) into sub-problems of bone insertion, skinning weight
optimization, and bone transformation optimization. We used the
optimization techniques from the SSDR model to solve these three
sub-problems. The main difference here is that the SSDR model
does not have prior information about the transformable bones, but
only information about the number. Hence, the SSDR model ap-
plies a clustering technique to simultaneously estimate an initial
bone configuration. In our method, the primary skeleton and its ex-
ample poses are given in the problem. This method inserts helper
bones using the incremental optimization with a hard constraint on
the primary bone transformation.

Algorithm 1 Optimization of helper bone transformations and skin-
ning weights

Input: {v̄j}, {Bd}, {ṽd,n}, {G̃d,n}, H
Output: {Ŝh,n}, {wj,d}, {ŵj,h}

1: {Ŝh,n} = I,∀h, n, {ŵj,h} = 0, ∀j, h
2: Initialize {wj,d}
3: repeat
4: Insert a new helper bone
5: Update helper bone transformations {Ŝh,n}
6: Update skinning weights {wj,d} and {ŵj,h}
7: Remove insignificant helper bones
8: until The number of inserted helper bones is reached
9: repeat

10: Update helper bone transformations {Ŝh,n}
11: Update skinning weights {wj,d} and {ŵj,h}
12: until The error threshold is reached

In the following sections, we will explain in detail the skinning
weight update step (line 2, 6, and 11 in Algorithm 1) in Section
4.1, the transformation update step (line 5 and 10) in Section 4.2
and the bone insertion step (line 4) in Section 4.3.

4.1 Skinning Weight Optimization

The skinning weights {wj,d} and {ŵj,h} are optimized by fixing
all bone transformations {Ŝh,n} in Equation 3. The resulting op-
timization problem is rewritten as following per-vertex constrained
least square problem as:

min
wj

∣∣∣[Ã Â]wj − b
∣∣∣
2

2
(5)

subject to wj ≥ 0, |wj |1 = 1, |wj |0 ≤ K, ∀j
where

wj =
[
wj,1 · · · wj,D ŵj,1 · · · ŵj,H

]T ∈ �(D+H)

Ã =

⎡
⎢⎣

(v̄j S̃1,1)
T · · · (v̄j S̃D,1)

T

...
. . .

...
(v̄j S̃1,N )T · · · (v̄j S̃D,N )T

⎤
⎥⎦ ∈ �3N×D

Â =

⎡
⎢⎣

(v̄j Ŝ1,1)
T · · · (v̄j ŜH,1)

T

...
. . .

...
(v̄j Ŝ1,N )T · · · (v̄j ŜH,N )T

⎤
⎥⎦ ∈ �3N×H

b =
[

ṽj,1 · · · ṽj,N

]T ∈ �3N .

This problem is NP-hard due to the L0-norm constraint |wj |0 ≤ K.
Hence, we use an approximation solution proposed in [Le and Deng
2012]. We exclude the L0-norm constraint from Equation 5, and
the resulting quadratic programming (QP) problem is solved using
a stock numerical solver. When the solution does not satisfy the
L0-norm constraint, the most effort K bones are selected, and the
weights for other bones are set to zero. The final solution is ob-
tained by solving the QP problem again with the selected K bones.

At the initialization step (line 2 of Algorithm 1) we assume that
there is no prior information about the skinning weight, even though
we can assign an artist-painted weight map as an initial guess.

4.2 Bone Transformation Optimization

The per-example optimization of the helper bone transformations is
formulated as a constrained least square problem that can be solved



with a block coordinate descent algorithm [Le and Deng 2012].
This algorithm optimizes the objective function (Equation 3) over
one helper bone transformations at each sub-iteration, while fixing
the other variables. In addition, transformation of the h-th helper
bone for each example shape is optimized while fixing the skin-
ning weights, the transformations of remaining H−1 helper bones,
and the primary bones, at each sub-iteration. Each sub-problem be-
comes a per-example weighted absolute orientation problem given
by:

min
R̂h,n,T̂h,n

∑
j

∣∣∣ṽj,n −
∑
d

wj,dv̄j S̃d,n

−
∑
i,i �=h

ŵj,iv̄jR̂i,nT̂i,n

− ŵj,hv̄jR̂h,nT̂h,n

∣∣∣
2

2
(6)

subject to R̂T
h,nR̂h,n = I, det R̂h,n = 1, ∀h, n

where the optimal R̂h,n and T̂h,n are obtained by the closed-form
method proposed in [Le and Deng 2012].

4.3 Incremental Bone Insertion

Our technique uses an incremental method to insert a new helper
bone into the region where the largest reconstruction errors occur.
For example, if the new LBS causes an elbow-collapse artifact, a
helper bone is generated around the elbow to minimize this artifact.
First, our system searches for a vertex with the largest reconstruc-
tion error, which is computed as:

argmax
j

∑
n

∣∣∣ṽj,n −
∑
d

wj,dv̄j S̃d,n −
∑
h

ŵj,hv̄j Ŝh,n

∣∣∣
2

2
. (7)

Second, we compute a rigid transformation that closely approxi-
mates the displacement of the identified vertex and its one-ring
neighbors, from their bind position by solving an absolute orien-
tation problem [Horn 1987]. Then, a new helper bone is gener-
ated using the estimated transformation as its own transformation.
Next, the skinning weights {wj,d} and {ŵj,h}, and the transfor-
mation matrix of all the helper bones are updated by solving the
constrained least square problems. Finally, the system removes in-
significant helper bones that have little influence on the skin defor-
mation. Our current implementation removes the helper bones that
influence less than four vertices. This process is repeated until the
specified number of helper bones is achieved.

5 Helper Bone Controller Construction

The helper bone controller is constructed by learning a mapping
from the primary bone transformations to the helper bone transfor-
mations. We use a linear regression model to represent the map-
ping. This simple representation allows artists to manually edit the
bone controller in a post-processing step. In the following sections,
we explain the transformation parameters that are used as variables
for the regression model. The model construction algorithm that
uses these parameters is explained in Section 5.3.

5.1 Selecting Coordinate System

The selection of coordinate systems to represent the bone transfor-
mation has a significant influence on the precision of the regression
model. For example, we can learn a mapping from the local trans-
formation matrices of primary bones {Ld} to the skinning matrix
of helper bone Ŝh as given in Equation 4. Alternatively, we can

use a mapping from the skinning matrices of primary bones {Sd}
to the global matrix of helper bones Ĝh. In most cases, we have ob-
served that the local transformation shows simpler trajectories than
the global or skinning transformation. For example, the helper bone
inserted to offset the elbow-collapse artifact shows a linear trajec-
tory in the elbow’s local coordinate system. In comparison, if we
use a global transformation to describe the helper bone movement,
the motion trajectory becomes highly nonlinear. This is caused by
a composite rotation of the ancestral bones in the skeleton hier-
archy, which results in a significant decrease of the approximated
accuracy. Hence, we use local transformation L̂h and Ld as both
independent and dependent variables of the regression model.

The local transformation matrix L̂h is extracted from the skinning
matrix Ŝh. This is the result of the per-example transformation op-
timization. By definition, the skinning matrix Ŝh is decomposed
into a product of transformation matrices as:

Ŝh = B̂−1
h L̂hGp(h) (8)

where p(h) ∈ {1, · · · , D} is the parent primary bone, and the bind
pose matrix B̂h is an unknown rigid transformation matrix. Assum-
ing that the helper bones local transformation is identity at the bind
pose, the bind matrix B̂h is equal to that of the parent primary bone
Bp(h) by the definition of forward kinematics. Therefore, we can
uniquely extract the local transformation matrix by:

L̂h = Bp(h)ŜhG−1
p(h). (9)

The appropriate parent primary bone p(h) is selected to minimize
the approximation error. The detailed selection algorithm is further
explained in Section 5.4.

5.2 Parameterizing Transformations

The extracted local matrix is parameterized with fewer variables to
reduce the dimensionality of the regression problem. Using rigid
transformation, the local transformation matrix L̂h can be param-
eterized using a combination of a translation vector t̂h ∈ �3 and
bone rotation variables r̂h ∈ �3. We used exponential maps for the
rotation variable r̂h [Grassia 1998]. This results in the transforma-
tion of L̂h to a six-dimensional pose vector form [̂th r̂h] ∈ �6.
In addition, the local transformation of primary bone Ld is param-
eterized by its animating variables. For example, when the primary
bone has no translation or scale animation key, we can use three
variables of the exponential map rd to parameterize the bone trans-
formation Ld. Further, we can reduce the number of variables using
the Euler angle representation for hinge and universal joints. How-
ever, to simplify this, we have assumed that each primary bone does
not have a translation or scale key, and that a bone rotation is always
represented by exponential maps.

5.3 Regression Model Construction

We have used a P -th order polynomial function as a regression
model. The pose vector of each helper bone is approximated by:

[
t̂h r̂h

]T
= fh (L1,L2, · · · ,LD)

= Fh

[
1 x1 · · · xD

]T
(10)

where xd ∈ �4HP−1 is an independent variable vector that is com-
posed of all variables of the P -th order polynomial of rd. For ex-
ample, if we take P = 2, the independent variable vector from
r = [r1, r2, r3] is x = [r1, r2, r3, r21 , r22 , r23 , r1r2, r1r3, r2r3]. The



regression matrix for h-th helper bone Fh ∈ �6×(1+
∑

d dim(xd)) is
estimated from examples using the least square technique. In addi-
tion, we add a sparsity constraint to minimize the number of non-
zero regression coefficient to generate a simpler model. The least
square problem with the sparsity constraint can be formulated as a
Lasso problem [Tibshirani 2011] given by:

min
Fh

|Yh − FhX|22 + λ |Fh|1 (11)

where

X =

⎡
⎢⎣

1 x1,1 · · · xD,1

...
...

. . .
...

1 x1,N · · · xD,N

⎤
⎥⎦

T

∈ �(1+
∑

d dim(xd))×N

Yh =

⎡
⎢⎣

t̂h,1 r̂h,1
...

...
t̂h,N r̂h,N

⎤
⎥⎦

T

∈ �6×N

and λ is the shrinkage parameter that controls the trade-off between
model accuracy and the number of non-zero coefficients. Using a
stock Lasso solver, we can efficiently solve this problem.

5.4 Parent Primary Bone Search

There is only one problem that remains: the selection of an appro-
priate parent bone p(h) for each helper bone. This is a discrete opti-
mization problem. Generally, since the number of primary bones is
smaller, we can implement an exhaustive search to find the optimal
one. Further, the best parent bone p(h) can be identified by evalu-
ating Equation 9, 10. Here, each primary bone can be used as p(h),
and the best one that minimizes the objective function (Equation
11) can be selected.

6 Experimental Results

We evaluated our system’s approximation capability and compu-
tational performance using example datasets, which cannot be re-
constructed with the LBS algorithm without helper bones. For all
experiments, the parameter K, which is the maximum number of
transformations to be blended, was fixed to a value equal to 4.
The reconstruction error was evaluated using root mean squared
(RMS) error of the vertex position. The optimization procedure of
the helper bone transformation is parallelized over vertices, helper
bones, or examples using Intel Threading Building Blocks. The
computational timing was measured at 3.4 GHz on a Core i7-4770
CPU (8 logical processors) with 16 GB RAM.

6.1 Test Dataset

We used a muscle function from Autodesk Maya to synthesize an
example skin shape from a skeleton pose. The muscle system em-
ulates static muscle-skin deformation with skeletal pose. The mus-
cle system also produces dynamic deformation which is caused
by bone acceleration and inertia of muscles. For our experiment,
we had used an earlier function because our method supports only
static mapping from a skeleton pose to a skin shape. The test char-
acter model is a sample asset of a Maya tutorial [Autodesk ] as
shown in Figure 2. The leg model height is 200 cm at the bind
pose. The skeleton has D = 3 animating bones and 5 degrees
of freedom (DOFs) including hip swing and twist (3 DOFs), knee
bend (1 DOF) and ankle bend (1 DOF). The eleven muscles expand
and contract according to the movement of the primary skeleton.
They drive the deformation of 663 vertices using the proprietary
algorithm.

(a) Primary skeleton (b) Muscle (c) Skin mesh

Figure 2: Character model used to create an example pose and
skin shape. The skin deformation is driven by a primary skeleton
and virtual muscle, which is a built-in function of Autodesk Maya.
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Figure 3: Convergence of the reconstruction error according to the
number of helper bones and iterations.

A test dataset was created by uniformly sampling the bone rotation
of the primary skeleton every 20 degrees within each range of joint
motion. Consequently, we created 6750 example pairs of skeleton
pose and skin shape. This was done by discretizing the DOFs of
the hip swing, hip twist, knee bend, and ankle bend into 6× 6, 9, 5,
and 5 levels, respectively.

6.2 Evaluating Optimized Bone Transformations

In the first experiment, different number of helper bones were
inserted into the character rig while fixing the polynomial order
P = 2 and the shrinkage parameter λ = 0. Figure 3 shows the
convergence of the reconstruction error with the number of helper
bones and the number of iterations. The reconstruction error de-
creased according to the number of helper bones. In addition, there
were no significant differences between the reconstruction error of
4 helper bones and that of 5 helper bones. This result indicates that
the approximation was almost converged at 4 helper bones. The
reconstruction error monotonically decreased with the number of
iterations, which demonstrates the stability of our system.
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Figure 4: Optimized character rigs using different number of helper bones. Each model shows a different helper bone behavior.

Figure 5: Skinning weight map for each helper bone. The larger
weight is indicated by a darker red area.

Figure 4 shows optimized models using different number of helper
bones. The center image of each screen shot shows the bind pose,
and the left and right images show a leg stretching pose and bend-
ing pose, respectively. The helper bones a, b and c are located near
the hip, knee, and ankle to minimize the LBS artifacts. The helper

bone d is located in the thigh to emulate the muscle bulge. The skin-
ning weight map for each helper bone is visualized in Figure 5. The
helper bone a had a significant influence on a large area of the thigh,
while the other helper bones had a lesser influence. This is the stan-
dard result of our incremental bone insertion algorithm where the
first helper bone is inserted to offset the largest reconstruction error.
This result would be useful for a level of detail (LOD) control for
helper bones. We can suspend lesser effective bone controllers to
reduce the redundant computational cost when a rendered character
is small on the screen.

To build the rig with one helper bone, our system spent 0.17, 0.51
and 0.17 s per iteration for the bone insertion step, weight update
step, and transformation update step, respectively. The total opti-
mization time spent was about 15 s for 20 iterations. For the rig
with 4 helper bones, the time recorded was 0.17, 0.82 and 0.72 s
per iteration. The total time spent was about 32 s.

6.3 Evaluating Accuracy of Bone Controller

In the second experiment, we examined the approximation capabil-
ity of a helper bone controller. We evaluated the increase of the



Table 1: Statistics of the reconstruction error and the number of
non- zero polynomial coefficients considering the polynomial order
P and the shrinkage parameter λ.

Avg. # of non-zeros RMS error [cm]
λ 0 10 20 0 10 20

Linear 6 5.3 5.1 2.57 2.58 2.59
Quadratic 14 10.9 9.1 2.11 2.12 2.17

Cubic 26 18.4 15.1 2.03 2.07 2.11

RMS error that was caused by approximating the bone transforma-
tions with the regression model. In addition, we counted the num-
ber of non-zero polynomial coefficients using a different setting of
the polynomial order P and the shrinkage parameter λ while fixing
H = 4.

The results of the experiment are summarized in Table 1. The
baseline RMS reconstruction error, which was measured after the
per-example transformation optimization, was 1.36 cm. The in-
crease ratio of the approximation error was within the range of
150% - 190%. The reconstruction error decreased according to the
polynomial order, and there was no significant difference between
the quadratic and cubic polynomials. Alternatively, the redundant
polynomial terms were removed through the shrinkage parameter λ
while minimizing the increase of the approximation error.

In this experiment, our system spent about 5 μs per frame to com-
pute all the skinning matrices {Ŝh} from the primary skeleton pose
{Ld}. In detail, 1 μs was spent to compose the independent vari-
ables {xd} from the local transformation matrices {Ld}. Using
Equation 10, the computation of the regression model spent 1 μs
for each helper bone. The former time increases proportional to
the number of primary bones, and the latter time increases with the
number of helper bones. We could further improve the performance
by parallelizing the execution of bone controllers.

6.4 Test on Stylized Character Model

Our system was also evaluated on a more stylized character model
as shown in Figure 6 (a). We edited the leg model by modify-
ing the muscle parameter to amplify the muscle deformation. The
skin mesh was smoothed to 8322 vertices by subdividing polyg-
onal faces to evaluate detailed deformation. The example dataset
was created by the same procedure as the first experiment. In this
experimental setting, our system spent 2.6, 8.4, and 11.4 s per iter-
ation for the bone insertion, weight update step, and transformation
update step, respectively. The total time spent for 20 iterations was
about 420 s. The increase in the computational time is due to the
mesh smoothing.

First, we used 4 helper bones, and set P = 2 and λ = 10.0,
respectively. After per-example transformation optimization, the
RMS reconstruction error reconstruction error was 1.75 cm. After
bone controller construction, the final RMS error was 2.90 cm. The
results in Figure 6 (b), shows that the deformation required some
more details of the example shape, such as the bulging of thigh mus-
cles. Second, we used 8 helper bones expecting an improvement in
the reconstruction accuracy. After per-example transformation op-
timization, the RMS error was improved to 1.23 cm. However, the
final RMS error decreased slightly to 2.79 cm. As this number in-
dicates, we cannot see a significant difference in the reconstructed
skin shape, as depicted in Figure 6 (c).

This result shows that the regression approximation had canceled
the accuracy improvement by the bone insertion. This occurs due to
reconstruction accuracy, which is converged according to the num-

ber of helper bones as shown in Figure 3. On the contrary, the accu-
mulated error of regression models, increases almost proportional
to the same number. We might be able to minimize this problem by
introducing an advanced regression model, such as Gaussian pro-
cess models, to construct an accurate bone controller. However,
the complicated regression model prevents intuitive manual editing
and decreases efficiency. In our future work, we intend to investi-
gate this exchange between the regression accuracy and edit ability
of the bone controller.

7 Discussion and Future Work

This study proposed an example-based method to build a helper
bone rig from example pairs of primary skeleton pose and skin
shape. The optimization parameter includes the number of helper
bones, polynomial order, and shrinkage parameter in the bone con-
troller construction. This example-based method requires a lot of
example data to construct a robust bone controller that can synthe-
size a wide variety of skin deformations, which still demands a lot
of artist labor. However, several simulation methods have been pro-
posed to generate physically valid skin deformations using heavy
computations such as finite element methods [Li et al. 2013; Fan
et al. 2014]. In addition, performance capture equipment has been
developed to capture and construct a statistical skin deformation
model [Neumann et al. 2013]. These state-of-the-art techniques
will allow the mass production of many example skin shapes within
a short time period.

Currently, we do not provide any guideline to create an exam-
ple dataset. Even though, we have used the uniform sampling of
joint DOFs to create example poses in the experiments, this simple
method might generate many redundant examples. This method
may even possibly fail to sample important poses and shapes. We
plan to do further studies to identify a more artist-friendly workflow
that can create a minimal example dataset. We believe that an active
learning method [Cooper et al. 2007] could be a possible solution
that allows artists to design example shapes using a step-by-step
method.

Our future work includes an LOD control for the helper bones as
mentioned in the previous section. The computation of the helper
bone can be simplified, or skipped, when the rendered character is
small on the screen. Although our bone controller uses less com-
putational resources, such redundant computations should always
be avoided in real-time applications. We intend to design an LOD
control mechanism for helper bones.

In the future, we intend to produce a physically plausible secondary
skin deformation, such as muscle jiggling, using the helper bone
system. We believe that the helper bone is compatible for synthesiz-
ing such secondary motion at a lower computational cost. A simple
solution is to use a physics simulation, but this might not be com-
patible for stable synthesis of stylized skin deformations. We will
further explore an algorithm that can extract a controllable dynamic
bone controller from example animations.
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