
Realtime Texture Upsampling on Graphics
Hardware Using Fractal Coding

Yuto Kominami
Graduate School of Systems Design

Tokyo Metropolitan University
Tokyo, Japan

kominami-yuto@ed.tmu.ac.jp

Tomohiko Mukai
Graduate School of Systems Design

Tokyo Metropolitan University
Tokyo, Japan
tmki@acm.org

Abstract—The texture upsampling technique reduces the mem-
ory requirement and manual labor to create a high-definition
texture by procedurally increasing the image resolution on the
fly. We propose a realtime texture upsampling technique utilizing
an underlying fractal structure of surface texture found in nature,
such as in stone surfaces, tree bark, and animal skin. Our method
encodes the source texture by a fractal compression technique in
the authoring process. The cross-scale correspondences between
two mipmap layers are encoded as compact fractal codes and
packed in three types of GPU-friendly formats. The runtime
computation increases the resolution of the encoded textures by
recursively applying fractal decoding. Thanks to the concurrent
data structures, the texture upsampling by any power of 2 are
efficiently executed on GPUs. We also propose an iterative algo-
rithm to refine the fractal code to improve the upsampling quality.
We demonstrate the effectiveness of our proposed algorithm for
synthesizing a high-resolution texture with semi-random patterns.

Index Terms—texture, upsampling, fractal coding, graphics
hardware

I. INTRODUCTION

Realtime rendering of high-definition 3D graphics de-
mands high-resolution (or high-res) content, including high-
poly models, texture maps, and normal and displacement
maps. A digital content creation tool provides many functions
to create high-res assets efficiently and intuitively, whereas
manual creation is still labor-intensive. Especially, texture
creation requires hard manual labor as the image resolution
increases, even though many sophisticated texture synthesis
tools are available. For example, procedural techniques have
been developed to generate various textures by simply tweak-
ing intuitive parameters of expressions and scripts. Example-
based techniques are also widely used to create a rich-detailed
texture from a photograph or a stocked image in the authoring
process. However, such a high-res texture requires a large
memory capacity and bandwidth of graphics processing units
(GPUs) in runtime computation.

Image upsampling or super-resolution technique is a promis-
ing approach to alleviate the problems. The upsampling tech-
nique synthesizes a higher resolution image from a low-res
image on the fly. This approach significantly reduces memory
usage and data transfer time, compensating for the additional
computation time. For example, spline interpolation, such as
bilinear and bicubic interpolation, is a classical technique to

resize a texture size dynamically. The numerical approach
guarantees a continuous and smooth result, but the high-
frequency details are not produced. Deep learning techniques
are widely used to reconstruct a higher resolution image with
rich details from a low-res image. For example, commercially
available technologies, such as AMD FSR1, NVIDIA DLSS2,
and NVIDIA NIS 3, increases the resolution of a rendered
scene as a post-processing at an interactive rate. However, the
computational cost of the machine learning-based functions is
still non-negligible for hard realtime applications.

Our goal is to develop a realtime method that generates
a higher resolution texture from a low-res source image. Our
motivation is to synthesize a plausible texture with less compu-
tational cost, which can be applied to background 3D objects
in an interactive application. In other words, an accurate recon-
struction of an original image from a degraded lower resolution
image is not necessarily our goal. The problem relaxation is
reasonable under the assumption that the application user pays
more attention to the granularity of the rendered image than
the accuracy. Furthermore, we focus on semi-regular or semi-
random surface textures found in nature, such as tree bark,
stone surface, and cloth surface. The texture frequently had
a fractal structure where similar texel blocks appear multiple
times in identical textures and across multiple scales.

Moreover, our research aims to develop a GPU-friendly re-
altime method. There are several ideal conditions for realtime
rendering on a GPU. The first is that the computational proce-
dure should be optimized for the highly parallel architecture.
Each texel block must be processed independently with a well-
designed concurrent data structure. The second is the determin-
istic and unbranching computation: since texture upsampling
with conditional branching increases the computational cost
on GPUs, the runtime module should be implemented using
simple instructions. The third is memory efficiency; the cache-
friendly memory layout and smaller footprint are crucial for
maximizing the computational speed.

Our basic idea is to utilize the fractal structure of semi-
random images for texture upsampling. Figure 1 illustrates the

1https://www.amd.com/en/technologies/fidelityfx-super-resolution
2https://www.nvidia.com/en-us/geforce/technologies/dlss/
3https://github.com/NVIDIAGameWorks/NVIDIAImageScaling

Virtual range

Range Range

Virtual range

Precomputation: Fractal encoding

Offset texture Coordinate texture
Reduced texture

Source texture

Copy virtual
range with offset

Offset texture Coordinate texture Reduced texture

2x upsampling

1x reconstruction

Runtime upsampling: Recursive fractal decoding

Texel offset

Coordinate of
virtual range

Domain Domain

Similar block

Texel offset

Coordinate of
virtual range

Domain
Domain

Virtual range
Virtual range

Fig. 1: Overview of the fractal coding-based texture upsam-
pling. The domain-range correspondences are extracted in
the authoring process. The texture resolution is efficiently
increased by recursively applying the fractal decoding in the
runtime process using our novel texture formats.

overview of our method. Our method encodes correspondences
between a texel of a lower resolution texture and a small texel
block of the original texture into fractal codes. The encoded
information is compactly stored in three GPU-friendly data
formats: reduce texture, coordinate texture, and offset texture.
Thanks to the concurrent data structure, a visually plausible
higher resolution texture can be synthesized in realtime by
texel-wise parallel computation on a GPU. Our method enables
texture upsampling by the power of 2 by recursively applying
the fractal decoding with less computational cost. Moreover,
we propose an iterative algorithm to refine the fractal code
to improve upsampling quality. The parallel upsampling al-
gorithm causes a block-noise-like artifact as the texel-wise
upsampling neglects the continuity with surrounding texels.
The refinement algorithm optimizes the fractal codes to mini-
mize statistical differences among adjacent texel blocks of the
upsampled image.

The strength of the proposed algorithm includes efficient
and simple runtime computation. Our method is applicable
to the upsampling of various semi-random textures. However,
block-noise-like artifact becomes more noticeable as the scal-
ing ratio increases since the parallel runtime algorithm does
not consider the spatial coherence over the synthesized texture.
Moreover, our method is built on strong assumptions about the

fractal nature of the source texture. The upsampling quality
deteriorates when the source texture has few similar texel
blocks. These advantages and disadvantages of our method
will be discussed through several experiments.

II. RELATED WORK

Mipmapping is a standard approach to efficiently render the
optimal resolution texture using a pre-created multi-resolution
image. This technique constructs an image pyramid from the
highest resolution image in the authoring process. A level-
of-detail controller automatically selects an adequate mipmap
level at the runtime process. For example, the highest reso-
lution layer is used for a 3D object closest to the camera.
The lower resolution layers are adaptively selected based on
the distance from the camera. A problem with this approach
includes the redundant data size to store all mipmap layers.
Furthermore, the designer should create a high-definition tex-
ture. The manual creation is still tedious even though many
procedural texture synthesis tools are available.

Upsampling of a digital image has been well studied in
the fields of image processing and computer vision. There are
many methods, such as rule-based upsampling methods, spline
interpolation-based techniques, and the optimization-based ap-
proach [1]. An example-based upsampling is a promising
approach that learns pixel block-wise correspondences be-
tween low and high-res images. The learned correspondence
is then applied to a new low-res image to recover its most
likely high-res version [2]. Deep neural networks have also
been widely used for complex upsampling tasks [3], [4]
and the on-the-fly upsampling of a rendered image. They
provide high-quality results through a complex computation of
deep neural networks. In contrast, our purpose is to develop
a lightweight algorithm for synthesizing a plausible higher
resolution texture by upsampling a source texture rather than
accurately reconstructing a high-res image from the lower-res
degraded image.

Our method utilizes a fractal structure in a natural image.
Fractal coding is a method of compressing the information
in an image by replacing it with parameters in a system of
local iterative functions [5]. This method first divides the entire
image into multiple blocks, called domains, without overlaps.
Next, the larger blocks similar to the domain, called ranges,
are searched for each domain. If an adequate range is found,
the domain is replaced by the reference to the range block
with a simple affine transformation matrix. This approximation
dramatically reduces the data size when many domains are
replaced by a small number of ranges [6]. Our work is inspired
by fractal interpolation [7] that uses fractal coding for image
upsampling. The fractal interpolation is also used for image
upsampling in gradient domain [8]. These techniques provide
quality results but are not suited for realtime computation.

Fractal coding usually requires a large amount of sequential
computation. A parallel implementation method [9] executes
a fractal encoding process on GPUs, whereas the decoding
is sequentially processed that is not suitable for GPU imple-
mentation. Mip-pyramid texture compression method [10] uses

a local fractal coding strategy that enables random memory
access and a parallel implementation by reducing the data size
of fractal code. Our method introduces the basic idea of mip-
pyramid texture for realtime upsampling.

Our method is also closely related to single image super-
resolution techniques [11], [12], which can be regarded as a
kind of fractal interpolation. These techniques are an example-
based technique that generates a low-res/high-res pair of image
patches from a source image using an image pyramid tech-
nique. For example, the single image super-resolution method
[11] searches for patches in the reduced image that are similar
to patches in the source image. The patch correspondences
can be used to increase the resolution of the lower resolution
patch. This approach was later extended to an example-based
regression model that estimates a high-res patch from a low-
res patch by learning multiple pairs of examples [13].

We employ a similar approach to find low-res/high-res
correspondences across multiple scales. We assume the low-
res/high-res correspondence is given in the mipmap; 2×2 texel
block of the source texture to a corresponding texel in the
reduced texture. Our method further approximates the cross-
scale correspondence by replacing the high-res texel block
with a similar texel block in the reduced texture, assuming
the source image has a fractal structure. The approximation
enables an efficient packing of the fractal code into a GPU-
friendly texture format.

III. ALGORITHM

The proposed algorithm consists of the precomputation
stage and the runtime computation stage. The fractal encoding
of the source texture and the iterative refinement are executed
on CPUs in the precomputation stage. The runtime upsam-
pling is implemented as a pixel or compute shader program
composed of simple arithmetic operations and texture fetch
instructions on GPUs. This section explains the overview of
fractal codes and the relationship with the texture upsampling.
Next, we will explain how to encode a source texture into
fractal codes as three types of smaller textures in §III-B. Then,
the runtime upsampling procedure will be detailed in §III-C,
and the iterative refinement will be explained in §III-D.

A. Fractal Codes For Upsampling

Our method first encodes a source texture into fractal codes.
We introduce three types of half-size textures: reduced texture,
offset texture, and coordinate texture for representing the
encoded data in a GPU-friendly format. Let T ∗

1 (p) be a texel
value of the source texture at a 2D coordinate p = [px, py],
and R(c), C(c), and O(c) be a texel value at c = [cx, cy]
in the reduced texture, the coordinate texture, and the offset
texture, respectively. We here use a calligraphic symbol T (p)
that denotes a 2 × 2 texel block composed of T (px, py),
T (px + 1, py), T (px, py + 1), and T (px + 1, py + 1).

A typical fractal compression technique approximates a
small texel block, called domain, by a similar texel block
of different sizes, called range, with an affine transformation
matrix. The traditional methods find a domain-range relation in

2c +∆0,0

T ∗
1

c

Source texture

2c +∆0,1

2c +∆1,0

2c +∆1,1

Reduced texture R

C

Offset texture O

[3,2]

domain

virtual range

range

Fractal codes

Coordinate texture
(-)

Fig. 2: Three types of half-size textures for fractal codes.

the same source image. In contrast, our method utilizes a cross-
scale correspondence [10], [11] between adjacent mipmap
layers. We assume that the low-res/high-res correspondence
is established between a domain texel in the reduced texture
R(c) and the 2× 2 range block T ∗

1 (2c) in the source texture
[10]. Furthermore, the range block is approximated by a virtual
range in the reduced texture utilizing the fractal nature of the
semi-random texture. Concretely, our method approximates a
range block in the source texture using the encoded textures
as follows.

T ∗
1 (2c+∆0,0) ≈ R(C(c) + ∆0,0) +O(c)

T ∗
1 (2c+∆1,0) ≈ R(C(c) + ∆1,0) +O(c)

T ∗
1 (2c+∆0,1) ≈ R(C(c) + ∆1,0) +O(c)

T ∗
1 (2c+∆1,1) ≈ R(C(c) + ∆1,1) +O(c)

, (1)

where ∆a,b is an integer vector ∆a,b = [a, b] representing
a texel offset. The reduced texture R is generated from the
source texture T ∗

1 using an arbitrary downsampling algorithm.
The coordinate texture C(c) represents a mapping from the
2D coordinate of the domain texel R(c) to the 2D coordinate
of the virtual range R(C(c)) that best approximates T ∗

1 (2c).
A texel value of the offset texture O(c) contains the mean
texel error between the range and virtual range.

Figure 2 illustrates an example of the domain-range relation
and the fractal codes. In this example, 2×2 block in the source
texture T ∗

1 (2c) is the range block, and the corresponding texel
R(c) in the reduced texture is the domain texel. The coordinate
of the left top texel of the virtual range closely similar to the
range block T ∗

1 (2c) is stored in the coordinate texture C(c).
The mean difference of texel value between the range and the
virtual range is stored in the offset texture O(c). The original
range block is approximated by applying the offset O(c) to
each texel of the virtual range R(C(c)).

The fractal decoding process can be regarded as a texture
upsampling where the source texture is reconstructed from
the half-size reduced texture. We apply the domain-to-range
upsampling rule of Equation 1 recursively to generate a higher
resolution texture by assuming the decoded image to be the
reduced texture of the next upsampling level. This approach
achieves an efficient data compression and runtime synthesis
thanks to the packed texture format. However, since our

fractal coding is a lossy algorithm, the reconstructed texture
causes an error as the reduced texture loses the high-frequency
component of the source texture. We think that a certain
amount of reconstruction error can be tolerated to generate
a high-res texture with plausible details.

B. Fractal Encoding

The encoded textures are generated in the precomputation
stage using a fractal encoding technique. First, the source
texture is divided into multiple ranges where each range is
2×2 texel block. The domain-range relation is then established
between a domain texel in the reduced texture R(c) and the
range block in the source texture T ∗

1 (2c). Next, virtual range
R(C(c)) that is similar to the range block T ∗

1 (2c) is searched
in the reduced texture using an off-the-shelf template matching
algorithm. We use the sum of squared error of texel value as
similarity measure for the template matching as follows.

x∗, y∗ = argmin
x,y

Etexel(x, y) , (2)

Etexel(x, y) =

1∑
∆x=0

1∑
∆y=0

|T1(2cx +∆x, 2cy +∆y)

− R(x+∆x, y +∆y)|22 , (3)

where | · |α represents Lα norm. The optimized coordinate
value is stored to the coordinate texture as C(c) = [x∗, y∗].

The offset texture value O(c) is finally determined as the
mean of approximation error of the virtual range as follows:

O(c) =
1

4

1∑
∆x=0

1∑
∆y=0

T ∗
1 (2cx +∆x, 2cy +∆y)

−R(x∗ +∆x, y∗ +∆y) . (4)

The reconstruction quality is degraded by averaging the ap-
proximation error of four texels, especially when the gradient
in the range block is large and there is a significant dissimi-
larity between the range and virtual range. We could improve
the upsampling quality by storing the texel-wise error as the
offset texture, but it increases computation time and data size.

C. Runtime Upsampling By Fractal Decoding

The reduced texture can be upsampled by powers of two.
First, the texture T1 whose size is equivalent to the source T ∗

1

is approximated using the encoded textures based on Equation
1 as follows.

T1(2p1 +∆1) = R(c1) +O(c0) , (5)
c1 = C(c0) + ∆1 , (6)

where c0 = [floor(p1,x/21),floor(p1,y/21)]. ∆n is an integer
offset at n-th level which is any one of ∆0,0, ∆0,1, ∆1,0, or
∆1,1, as shown in Figure 2.

Similarly, the twice larger texture T2 is synthesized using
the encoded textures. Figure 3 illustrates the upsampling
procedure. A domain texel R(c0) is first replaced by the sum
of virtual range R(C(c0)) and the offset value O(c0). The

4c0 4c + 20 ∆1,0

4x upsampling

4c + 2 +0 ∆1,0 ∆1,1

c0

1c

∆1,1

2c

(0C c)

(1C c)

Reduced texture

∆1,0

R

Fig. 3: Recursive upsampling using the reduced texture.

right top texel of the virtual range R(C(c0+∆1,0)) is next up-
sampled using the virtual range at C(c1) = C(C(c0+∆1,0)).
The virtual range R(C(c1)) + O(c1) + O(c0) is used as the
right top 2× 2 block as framed in green. The synthesis of the
twice larger texture T2 is formulated as Equation 7 and 8.

T2(p2 +∆2) = R(c2) +O(c1) +O(c0) , (7)
c2 = C(c1) + ∆2 , (8)

where c0 = [floor(p2,x/22),floor(p2,y/22)]. Inductively, the
2n fold upsampling procedure is formulated as a recursive
equation as follows.

Tn(pn +∆n) = R(cn) +

n−1∑
i=0

O(ci) , (9)

cn = C(cn−1) + ∆n . (10)

Our recursive upsampling algorithm takes linear time with
respect to the integer scaling factor n as Equation 9 and 10
indicate.

D. Fractal Code Refinement

Any stage in the runtime upsampling does not consider the
spatial coherence with the neighboring texels and blocks. Our
method causes block noise-like artifacts in the upsampled im-
age, especially when the scaling ratio is large. To improve the
upsampling quality, we extend the precomputation of fractal
coding using a spatial proximity condition and a synthesis-
analysis-refinement approach.

First, the dissimilarity measure in the template matching for
the queried domain texel R(c) and corresponding range block
T ∗
1 (2c) is weighted to consider the spatial proximity in the

reduced texture as follows.

E(x, y) = Etexel(x, y) + Ecoord(x, y) . (11)

The definition of texel dissimilarity term Etexel is same as
in Equation 3. The coordinate dissimilarity measure Ecoord is
defined as a Manhattan distance:

Ecoord(x, y) = β (|x− 2cx|1 + |y − 2cy|1) , (12)

where β is a weighting coefficient, which was set to β = 1.0 in
our experiments. This weighting strategy preferentially finds
neighboring blocks.

The weighted dissimilarity term is used to find multiple
candidates that satisfy the following equation:

E(x, y) < E(x∗, y∗) + ∆Emax , (13)

where (x∗, y∗) denotes the texel coodinate that has the small-
est dissimilarity, and ∆Emax is the tolerance limit from the
minimum dissimilarity.

Second, the virtual range is iteratively replaced by the best
candidate, minimizing the difference with the neighboring
texel blocks. We use variance of Laplacian value for the
minimization criterion as∑

c

(
L(c)− L̄

)2
, (14)

where L(c) is a 4-neighborhood Laplacian at c and L̄ is the
mean of the all texels. The refinement of coordinate texture
C(c) is consequently formulated as Equation 15.

C(c) = argmin
(x,y)∈Ω

∑
(cx,cy)

(
L(c)− L̄

)2
, (15)

Ω := {(x, y)|E(x, y) < E(x∗, y∗) + ∆Emax} .

The offset texture O(c) is also updated by Equation 4 using
the refined coordinate.

We use a synthesis-and-analysis approach to update the
domain-range relation iteratively. C(c) and O(c) are updated
by selecting an optimal candidate to minimize the variance of
Laplacian (Equation 14) while fixing the other range blocks
corresponding the domain c′ ̸= c. This block coordinate
descent refinement repeats for all domain texels. This approach
achieves a better quality of the synthesized texture, although
the convergence to the global optimum is not guaranteed.

IV. IMPLEMENTATION

We implemented fractal encoding using Python with the
OpenCV library. The runtime upsampling module was im-
plemented as a pixel shader of Unity. The reduced texture
R is created by a standard downsampling algorithm. Both
the offset texture O and coordinate texture C are stored
in two-dimensional RGB texture format, in which an eight-
bit represents each color channel. To compactly pack C(c)
into eight bit format, the exploration area of Equation 2 is
limited to even-index texel blocks within 511 × 511 area
centered at the domain as x∗ ∈ [cx − 255, cx + 255] and
y∗ ∈ [cy − 255, cy + 255]. As a result, C(c) stores the half
of coordinate value relative to [cx, cy], and the integer value
within [−125, 126] is stored in two channels of each texel of
the coordinate texture.

V. RESULTS

We validated our proposed method through several exper-
iments. In all our experiments, we set the tolerance limit
∆E = 100. The computational performance is measured on
a laptop PC with AMD Ryzen5 3600, 24 GB RAM, and
NVIDIA GeForce RTX 2070.

Figure 4 shows the 8x upsampling results of the sisalfloor
texture using the different three methods. The source tex-
ture has typical semi-regular patterns where combinations of
random and regular patterns appear cyclically. The bilinear
provided a smooth result but lost the high-frequency details.
A deep learning-based method, called LapSRN [14], [15],
preserved the high-frequency details better than bilinear, but
the anisotropic fiber texture was not obtained. In contrast, our
proposed method well preserved fibrous features. Moreover,
our method is significantly faster than LapSRN owing to
embarrassingly parallel computation with simple instructions.
Note that we obtained trained models for LapSRN from the
OpenCV website 4. We could further improve the upsampling
quality of LapSRN using another dataset appropriate for our
experimental dataset.

Figure 5 summarizes the upsampling result of the sisalfloor
texture by our method at different scales. The fibrous features
were well preserved even when increasing the resolution by
eight times, and there are few artifacts thanks to the fractal
code refinement.

Figure 7 shows the results of the microscopic leaf texture.
The granularity of the texture was well enhanced without fun-
damental artifacts. Sharper boundaries were produced between
the green and yellow regions and between the darker and light
green regions. Our method successfully worked for a source
texture with a mixture of slight and significant color changes.

Figure 8 shows the upsampling results of the manufactured
brickwall texture. These results indicate that the texture fea-
tures were well preserved up to 4x upsampling. However,
noticeable block noise and impulsive black texels were caused
at 8x upsampling regardless of the fractal code refinement.
This result demonstrates a drawback of the texel-wise parallel
algorithm without considering the spatial coherence.

Figure 9 demonstrates the other limitation of our method.
The upsampled results of the rotatetiles texture lost the sharp
boundaries and became rough and jaggy. The low-quality
result was produced because of the low similarity between
the range block and the virtual range. Our method assumes
that the source texture has a cross-scale fractal structure, i.e.,
there are many similar blocks among multiple mipmap levels.
We think that the search for the virtual range failed since there
were a few similar texel blocks in the source texture, as shown
in Figure 9(a).

Table I summarizes the quality evaluation of 1x reconstruc-
tion of the four textures. We used the peak signal-to-noise
ratio (PSNR) to quantitatively evaluate the accuracy of the
reconstructed texture T1 from the reduced texture R. These
results demonstrate the inaccuracy of image reconstruction
by our method, as the bilinear interpolation and LapSRN
method indicated better accuracy for the sisalfloor texture,
with PSNR=28.46 and 30.29, respectively. However, we think
a certain amount of error is acceptable to synthesize plausible
high-res textures with less visible artifacts.

4https://github.com/opencv/opencv contrib/tree/master/modules/dnn
superres

(a) Source texture

(b) Region of interest (c) Bilinear interpolation

(d) LapSRN method (e) The proposed method

Fig. 4: Comparison with two conventional methods

TABLE I: Quantitative quality evaluation using PSNR

sisalfloor leaf brickwall rotatetile
23.3032 29.1015 23.0404 34.4637

Finally, runtime performance was evaluated using a simple
scene as shown in Figure 10. The leaf and brickwall textures
were mapped onto the ground floor and the cube, respectively.
The baseline method is the standard bilinear interpolation
technique and mipmaps. We measured the turnaround time
of the pixel shader assigned to the two models. The bilinear
interpolation and our method spent 28 usec and 184 usec,
respectively. Our method took a longer computation time due
to the recursive upsampling. We think it is worth spending the
additional computation to synthesize high-res texture on the
fly with less memory requirement.

VI. DISCUSSION

In this study, we have developed a realtime, GPU-friendly
upsampling algorithm. The technical contribution of our
method is twofold. First, the cross-scale correspondences

(a) Region of interest (b) 2x upsampling

(c) 4x upsampling (d) 8x upsampling

Fig. 5: Upsampling of sisalfloor texture at difference scales.

(a) None (b) Once

(c) Twice (d) Three times

Fig. 6: Effect of the number of refinement iterations.

between two mipmaps are extracted as fractal codes. Second,
the fractal codes are compactly packed into three types of con-
current data formats thanks to the virtual range representation.
These fundamental ideas enable the simple implementation
of the runtime computation, the small number of texture
samplings, and a realtime computation of recursive fractal
decoding.

(a) Source texture

(b) Region of interest (c) 2x upsampling

(d) 4x upsampling (e) 8x upsampling

Fig. 7: Upsampling results of leaf texture

Our method assumes that the source texture has a fractal
structure, under which the plausible upsampling is possible
for semi-regular or semi-random textures. Our experiments
demonstrated that this assumption is valid for natural images
such as tree bark, stone, and cloth surface. However, the up-
sampling quality deteriorates when the source texture includes
a few similar texels. For example, our method is unsuitable for
a geometrically-designed texture with many colors, regularly-
shaped elements, and texts. We should investigate another
approach suitable for such geometric patterns. The integration
of a lightweight denoiser will be helpful in reducing artifacts.

Our upsampling algorithm is customized for color maps.
Realtime upsampling of normal, displacement and the other
maps should be explored for high-quality rendering with fewer
data and computation. Our future work also includes the use
of more mipmap levels. The current algorithm only uses two
mipmaps to establish correspondences between domain texel
and virtual range blocks. The upsampling quality could be
improved by utilizing the fractal structure among three texture

(a) Source texture

(b) Region of interest (c) 2x upsampling

(d) 4x upsampling (e) 8x upsampling

Fig. 8: Upsampling results of brickwall texture

scales. Moreover, instead of texel-to-block correspondence,
it is possible to use block-to-block correspondence. These
extensions would contribute to quality improvement in com-
pensation for additional computational costs.

ACKNOWLEDGMENTS

This work was supported by PlatinumGames Inc.

REFERENCES

[1] J.D. van Ouwerkerk. Image super-resolution survey. Image and Vision
Computing, 24(10):1039–1052, 2006.

[2] W.T. Freeman, T.R. Jones, and E.C. Pasztor. Example-based super-
resolution. IEEE Computer Graphics and Applications, 22(2):56–65,
2002.

[3] Chao Dong, Chen Change Loy, Kaiming He, and Xiaoou Tang. Learning
a deep convolutional network for image super-resolution. In European
Conference on Computer Vision, pages 184–199, 2014.

[4] Z. Wang, J. Chen, and S. H. Hoi. Deep learning for image super-
resolution: A survey. IEEE Transactions on Pattern Analysis & Machine
Intelligence, 43(10):3365–3387, 2021.

[5] M.F.Barnsley. Fractals Everywhere. Academic Press, 2005.

(a) Source texture

(b) Region of interest (c) 2x upsampling

(d) 4x upsampling (e) 8x upsampling

Fig. 9: Upsampling results of rotatetile texture

[6] A.E. Jacquin. A novel fractal block-coding technique for digital
images. In International Conference on Acoustics, Speech, and Signal
Processing, volume 4, pages 2225–2228, 1990.

[7] H. Honda, M. Haseyama, and H. Kitajima. Fractal interpolation for
natural images. In International Conference on Image Processing,
volume 3, pages 657–661, 1999.

[8] Licheng Yu, Yi Xu, Hongteng Xu, and Xiaokang Yang. Self-example
based super-resolution with fractal-based gradient enhancement. In IEEE
International Conference on Multimedia and Expo Workshops, pages 1–
6, 2013.

[9] Abir Al Sideiri, Nasser Alzeidi, Mayyada Al Hammoshi, Munesh Singh
Chauhan, and Ghaliya AlFarsi. Cuda implementation of fractal image
compression. Journal of Real-Time Image Processing, 17(5):1375–1387,
2020.

[10] J. Stachera and P. Rokita. Fractal-based hierarchical mip-pyramid
texture compression. Machine Graphics & Vision International Journal,
15(3):607–619, 2006.

[11] Daniel Glasner, Shai Bagon, and Michal Irani. Super-resolution from
a single image. In IEEE 12th International Conference on Computer
Vision, pages 349–356, 2009.

[12] Gilad Freedman and Raanan Fattal. Image and video upscaling from
local self-examples. ACM Trans. Graph., 30(2), 2011.

[13] Jianchao Yang, Zhe Lin, and Scott Cohen. Fast image super-resolution
based on in-place example regression. In IEEE Conference on Computer
Vision and Pattern Recognition, pages 1059–1066, 2013.

(a) Bilinear interpolation

(b) Our method

Fig. 10: Performance comparison using a simple scene.

[14] Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang.
Deep laplacian pyramid networks for fast and accurate super-resolution.
In IEEE Conference on Computer Vision and Pattern Recognition, 2017.

[15] Wei-Sheng Lai, Jia-Bin Huang, Narendra Ahuja, and Ming-Hsuan Yang.
Fast and accurate image super-resolution with deep laplacian pyramid
networks. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, 2018.

